微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 双输出单级PFC变换器的高亮LED驱动方案

双输出单级PFC变换器的高亮LED驱动方案

时间:10-23 来源:3721RD 点击:

 
  
图2 双路输出单级反激PFC 驱动器及控制环路示意图。


 
图3 所示为双路输出单级反激PFC 变换器原边电流iQ1,副边电流iQ2,iQ3的控制时序示意图,图中时分复用信号( TMS ) 决定了调节的支路。当TMS = 1 时,变换器对A 路进行调节,此时变换器根据A 路的设计参数进行工作,此路原边与副边开关电流峰值包络线分别如图3 中的IQ1_A( θ) 和Ipkp_Q2( θ) 所示; 当TMS = 0 时,变换器对B 路进行调节,此时变换器就根据B 路的设计参数进行工作,此路原边与副边开关电流峰值包络线分别如图3 中的IQ1_B( θ) 和Ipkp_Q3( θ) 所示; 变换器输入平均电流为两路输入电流的平均值,如图3 中的IQ1_avg( θ) 所示。


 
 
图3 双路输出单级反激PFC 变换器控制时序示意图。

 
为了实现定占空比控制,单级反激PFC 变换器误差放大器的带宽必须要小于2 倍工频,一般为10~ 20Hz 左右,这样设置的误差放大网络对输出工频纹波及输入的正弦电压不会很敏感,即可实现定占空比要求,从而实现PFC。

为了使双路输出无交叉影响以及PFC 功能,保证电路工作在DCM 下是非常重要的。为了保证电感电流处于断续模式,A 路应满足(1):

其中,Vpkp为输入电压的峰值,θ 为输入频率,T 为开关周期( = TA + TB) ,TA为一个开关周期内A 路的复用时间。半个工频周期内,变换器在定占空比条件下,A 路输入电流峰值的包络线为(3):
 
其中Ipkp_A为A 路输入电流的最大峰值。A 路主开关导通时间为:(4)

 
  
 
其中,LP是原边电感值。A 路副边开关导通时间为:(5) 
 
其中,LS是副边电感值; ISP( θ) 是副边电流峰值,它也是正弦函数; NA为原边和副边的匝数比; Vf是副边二极管导通压降。
 
A 路输入电流瞬时值为:(6)
  
要保证A 路工作于断续模式,需满足式( 1) ,将式( 4) ,( 5) 代入,可得临界电感:(7)
  
A 路输入的平均功率可表示为:(8)
 
若Lp固定,A 路原边开关电流的最大峰值为:(9)
 
同理,B 路原边峰值电流的最大峰值为:(10)

若变换器无能量损耗,则A 路,B 路最大输出功率为:(11)(12)
 
如果两路输出电压相等,根据式( 11) 、( 12) ,那么A路,B 路最大输出功率与A 路复用占空比DA的关系如图4 所示:
 
 
 

 
 
图4 A、B 路最大输出功率与DA的关系图。


 由图4 可知,如果两路所需功率不同,比如PA /PB = 2,DA选择0. 586 可使在满足两路输出功率的前提下最大提升变换器输出的总功率,此时电感电流处于临界导电模式。所以根据每一路的最大需求功率分配复用时间,可以提高电感的利用率。
 
4 仿真和实验结果
 
为了验证双路输出单级反激PFC 变换器的可行性,根据图2 所示的独立调节双输出反激变换器以及控制实现要求,选用表1 的电路参数进行仿真,并制作了样机。为了简化设计,设定变压器原边与副边绕组的匝比为36∶ 9∶ 9,选择时分复用信号的复用时间比TA ∶ TB = 1∶ 1,如表1 所示。
 
表1 PWM 控制双输出单级反激PFC 变换器电路参数。


 

 图5 为变换器输入电压Vin与输入电流Iin及主开关的开关电流IQ1的仿真波形

从图可以看出输入电流很好地跟踪了输入电压。图6 为时分复用信号TMS、驱动信号Vs1、两路辅助开关电流iQ2,iQ3的实验波形,图7 为变换器输入电压Vin与输入电流Iin及流经主开关的电流iQ1的实验波形,可以看出输入电流能够很好地跟随输入电压变化,验证了仿真的结果,实测PF 值为0. 967; 图8 为输出电流Ioa、Iob的实验波形,可以看出,A 路输出平均电流Ioa,rms为347mA,纹波Ioa,p-p为32mA,B 路输出平均电流Iob,rms为173mA,纹波Iob,p-p为32mA,实现了双路恒流输出。图9 所示为样机正常工作时的实物图。

 
 

 
5 结论
 
随着高亮LED 的广泛应用,本文提出了一种基于双输出单级反激PFC 变换器驱动高亮LED 的方法。其中每一条输出支路电流可独立调节,从而可使每路分别驱动不同类型的LED; 其中一路故障不影响另一支路的正常输出,提高了驱动器的可靠性;由于此方法只用到一个磁性元件即可实现两路恒流输出,不需要大的输入支撑电容,降低了驱动器的成本,且易于实现隔离及PFC 功能,实测达到了0. 967的PF 值。此方法为需要多路恒流源并且需要实现功率因数校正的应用提供了一种有效的解决思路。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top