微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 新型汽车设计需要具超低 Iq 的高压同步降压型转换器

新型汽车设计需要具超低 Iq 的高压同步降压型转换器

时间:11-07 来源: 点击:

高效率工作

汽车应用中电源管理 IC 的高效率工作是十分重要,这出于两个主要原因。首先,电源转换效率越高,以热量形式浪费的能量就越少。就任何电子系统的长期可靠性而言,热量都是大敌,因此必须有效控制热量,控制热量一般需要散热器,这增大了解决方案的复杂性、尺寸和成本。其次,在混合型或电动型汽车中,任何电能的浪费都将直接缩短汽车能行驶的路程。直到不久前,高压单片电源管理 IC 和高效率同步整流设计还是相互排斥的,因为所需的 IC 工艺不能同时实现这两个目标。历史上,效率最高的解决方案是高压控制器,这类控制器用外部 MOSFET 实现同步整流。然而就低于 15W 的应用而言,与单片解决方案相比,这样的配置相对复杂和笨重。幸运的是,市场已有能同时提供高压 (高达 42V)、高效率和内部同步整流的新型电源管理 IC。

"始终保持接通"系统需要超低电源电流


人们要求很多电子子系统以"备用"或"保持有效"模式工作,从而在这类状态下以稳定的电压吸取最小的静态电流。在大多数导航、行车安全、车辆安全和引擎管理电子电源系统中,都能见到这类电路。每一个这样的子系统都可能使用几个微处理器和微控制器。大多数豪华型汽车都有超过 100 个这类内置的 DSP,其中约 20% 需要始终保持接通工作。在这类系统中,电源转换 IC 必须以两种不同的模式工作。首先,当汽车运行时,给这些 DSP 供电的电源一般会以电池和充电系统馈送的满电流工作。不过,当汽车点火系统关闭时,这些系统中的微处理器必须保持"有效",从而要求它们的电源 IC 提供恒定电压,同时从电池吸取最小的电流。既然可能有超过 20 个这种始终保持接通的处理器同时工作,那么即使点火系统关闭了,对电池也存在极大的功率需求。总体上,可能需要数百 mA 的电源电流给这些始终保持接通的处理器供电,这可能在几天之内就彻底耗尽电池的电量。例如。如果一辆汽车的每个高压降压型转换器都需要 2mA 至 10mA 的电源电流,那么来自车辆安全系统、GPS 系统和遥控车门开启系统以及 ABS 刹车等其他必须始终保持接通的系统之 20 个这类转换器,再加上电动车窗的漏电流,就有可能使车主在完成一次延长的 3 周商务旅行之后会发现电池电量已经耗尽,从而无法运转引擎。这些电源的静态电流必须极大地降低,以在不增加电子系统尺寸或复杂性的前提下,延长电池寿命。直到不久前,高输入电压和低静态电流这两个 DC/DC 转换器 IC 的参数还是相互排斥的。

为了更好地满足这些需求,几家汽车制造商确立了低静态电流目标,即每个始终保持接通的 DC/DC 转换器的静态电流 <10uA。直到不久前,还要求系统制造商并联连接低静态电流 LDO 和降压型转换器,并在两者之间切换,以在汽车引擎未运转时,降低从电池吸取的电流。这导致了昂贵、笨重且效率相对低的解决方案。

一种新型解决方案

如之前已经讨论的那样,汽车电池总线遭遇不同的瞬态情况时,其电压可能从低于 4V 变化到超过 40V。随着停-启系统的积极采用,在一般的行程中,电源总线会多次遇到低压瞬态情况。需要良好稳定的电压轨以克服这些情况,就汽车电子系统而言,这一点是最重要的。汽车中电子系统的增多在持续加速,电子控制单元 (ECU) 用在车辆安全、行车安全、导航、底盘控制、以及引擎 / 变速器管理系统中,因此,对于能提供高效率、低静态电流、高频切换、以及非常可靠的保护功能和可靠性的高压电源管理 IC 之需求也将持续加速。幸运的是,IC 设计师已经满足了这些苛刻的要求。

凌力尔特的 LT8610 是第一个高压同步降压型稳压器系列。其 3.4V 至 42V 的输入电压范围使该器件非常适用于汽车应用,因为这类应用既会遇到冷车发动或停-启情况下的低压瞬态,又会遇到负载突降情况下的高压瞬态。其 2.5A 的连续输出电流和能够提供 VIN - 200mV 至 0.97V 的输出电压使该器件非常适用于很多直接靠电池总线运行的汽车轨。该器件可构成简单和占板面积非常紧凑的解决方案,无需任何外部二极管,如图 2 所示。



 \
 图 2:LT8610 用于提供 5V/2.5A 输出的汽车应用典型原理图


其同步整流设计包括内部顶端和底端 MOSFET,以提供高达 96% 的效率。图 3 显示,当用标称 12V 的输出给一个 5V 负载供电时,即使在相对高的 800kHz 开关频率情况下,该器件也可以提供超过 95% 的效率。这种高效率工作最大限度地减少浪费的功率,而且即使在空间最受限的应用中,也无需散热器。在电动型汽车和混合型汽车中,这可以直接转化为一次充电行驶距离的延长。


\
图 3:LT8610

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top