高压脉冲电源模拟实验
2A)60kV/1MW/3s二级加热高压脉冲电源提供了坚实的基矗
2 基于PSM 技术的高压电源发展及其工作原理
1983 年,BBC 公司研制出了第一台大功率、高压、固态调制器,亦称脉冲步进调制器(Pulse StepModulation,PSM),应用于高功率广播发射机。
基于PSM 技术的高压脉冲电源系统及输出如图1a、图1b 所示,该系统由多组低压斩波直流电源串联而成。通过电源模块的串联代替了IGBT 模块直接串联,从而能够避免IGBT 模块在直接串联工作模式下因模块提前关断或延后开通而承受高压损坏的缺点。该系统包括了PSM 多绕组变压器、SPS(Switched Power Supply)模块、控制系统、互锁和测量系统、高频滤波系统和负载。其中PSM 多绕组变压器一二次侧之间、二次侧之间的杂散电容对整个系统来讲是一个很重要的参数。SPS 模块是一个类Buck 电路,输出级没有LC 滤波部分,从而输出的是直流脉冲电源。电路中的二极管起着快速释放负载中的能量和在某个SPS 模块不工作时起着连通主回路的作用,这就要求该二极管为快恢复、大电流二极管。
由6 个SPS 模块组成的PSM 电源输出电压如图2a、图2b 所示。图2a 中6 个脉冲信号源的周期为T,占空比均为9/10,幅值为10V,第二个脉冲比第一个脉冲滞后T/6,第三个脉冲比第二个脉冲滞后T/6,以此类推,每个脉冲都比前一个脉冲滞后T/6。这六个直流电源串联之后得到的输出如图2b 所示,它是在5 个SPS 模块电压的基础上,叠加了频率为6/T,占空比为2/5,脉动幅值为10V 的直流脉冲电压。通过调节在线工作的SPS 模块的个数和每个模块的占空比及频率,就可以调节最终脉冲电源的电压和输出有效频率。
图1a 中所示的SPS 模块,在忽略IGBT 和快恢复二极管的管压降的情况下,每个SPS 模块的输出有两种状态:IGBT 导通时,其输出Vo=Vds;IGBT关断时,其输出Vo=0。
若有N个SPS模块可以在线工作,当单个SPS模块的频率为fs,占空比为Ds,导通时间为ton,每两个相邻模块的延时时间为td,则总的输出平均电压为Vo=NDsVds(0
3 PSM 多绕组变压器
每个SPS 模块都由多绕组变压器的一个二次侧独立供电。一台变压器为一个PSM 单元供电,其中二次侧的一半为星形联结,另一半为三角形联结。
这样可以在二次侧得到30°的相位偏移,能够使三相整流桥之后的直流电压源经串联之后得到12脉波,以此减小直流侧的纹波,并可以削减交流侧的电网波形畸变。PSM 多绕组变压器的主要技术问题是绝缘电压水平和系统的寄生电容。寄生电容由变压器二次侧之间的耦合电容、变压器一二次侧之间的耦合电容以及它们对地之间的耦合电容组成。由于耦合电容的存在,在变压器和SPS模块之间会引起电流的振荡,这会对IGBT 的开关产生影响。通过Matlab 仿真分析可知道,当二次侧对地电容越大,IGBT 在工作这种工作方式中就越不稳定。
4 基于PSM技术高压脉冲电源的模拟实验
对6 个SPS 模块进行PSM 电源模拟试验。为此设计并加工了一台实验用七绕组整流变压器(1个一次侧,6 个二次侧),其容量为330kVA。6 个二次绕组中3 个为星形联结,3 个为三角形联结,分别给6 个SPS 模块供电,且二次绕组对地、对一次绕组的分布电容小于1000pF。因为每个SPS 模块的输出参数为850V/100A,考虑到两倍安全裕量,选用赛米控公司生产的专门用于Buck 电路的SKM200GAL173D,其额定参数为1700V/200A,本身带有快恢复二极管的额定参数为200A。控制部分采用单片机来实现,通过光纤传输各种信号,驱动部分是采用TTL 推挽电路来实现。
当SPS 模块的工作频率为5.4kHz,开通脉宽为50μs,各模块之间依次延时时间约为30 μs 时,在SPS 模块交流侧输入电压为50V,其输出电压波形如图3 所示。忽略控制信号和驱动板的差异性,以及测量误差, 可知叠加部分的工作频率约为32.4kHz,占空比约为65%。由f =N fs 计算出的输出纹波脉动频率为32.4kHz,由f、开通脉宽50 μs、延时时间30 μs ,可计算出脉动占空比为64.8%。由此可知实际测量值与理论分析值基本一致。
当SPS 模块交流侧输入线电压为620V,负载为48Ω时,通过改变程序来观察步进效果和整个电源的关断时间,如图4a、图4b 所示。测得的电压为4900V,电流为107A,关断时间约为4.2 μs。图4b 所示为Vce 波形,通过观测IGBT 的Vce 波形可以看到在工作过程中,IGBT 在导通时有尖刺,通过与输出波形比较,在Vce 减小的时刻,对应的输出电压波形并未发生变化,因而此尖刺为干扰信号。
5 结论
由于
- LT3751如何使高压电容器充电变得简单(08-12)
- 家电智能功率模块单驱动电源方案(10-07)
- 高压MOS在进行产品开发时的注意要点(02-01)
- 基于紫外检测法的智能型特高压验电器系统(03-17)
- 基于SOI高压集成技术的电平位移电路设计(09-06)
- 高压变频器电动机保护配置(11-26)