微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 新时代能量收集应用无处不在

新时代能量收集应用无处不在

时间:05-17 来源:凌力尔特公司电源产品部产品市场总监Tony Armstrong 点击:

要成功设计一款完全独立的无线传感器系统,需要现成的节电型微控制器和换能器,并要求这些器件消耗最小和来自低能量环境的电能。幸运的是,低成本和低功率传感器及微控制器已经上市两三年左右了,不过只是在最近,超低功率收发器才投入商用。然而,在这一系列环节中,处于落后的一直是能量收集器。现有的能量收集器模块实现方案 (如图 1 所示) 往往采用低性能和复杂的分立型结构,通常包括 30 个或更多的组件。此类设计转换效率低,静态电流高。这两个不足之处均导致最终系统的性能受损。低转换效率将增加系统上电所需的时间,反过来又延长了从获取一个传感器读数至传输该数据的时间间隔。高静态电流则对能量收集源的输出能达到的最低值有所限制,因为它必须首先提供自己工作所需的电流,多出来的功率才能提供给输出。正是在能量收集器这个领域,凌力尔特公司最近推出的产品 LTC3109、LTC3588-1 和 LTC3105 使性能和简单性上提升到一个新水平。

这些能量收集 IC 所带来的新性能水平是采用分立式方案完全无法实现的。因此,它们由于能够收集非常低的环境能量而成为了推动能量收集系统制造商成长的"催化剂"。凭借这种性能水平,再加上换能器、微控制器、传感器和收发器经济合算的价位,使其市场接受度得以提升。这也是此类系统在全球范围的众多应用中受到大量关注的原因之一。

 

一个现实世界的例子:"飞机健康状况监视"

今天,大型机群的结构性疲劳是一个现实问题,因为如果忽视该问题,就可能导致灾难性后果。目前,飞机结构状况是通过多种检查方法来监视的,如通过改进的结构化分析和跟踪方法,通过采用评估结构完整性的创新理念 … 等等。这些方法有时又统称为"飞机健康状况监视"方法。在飞机健康状况监视过程中,采用了传感器、人工智能和先进的分析方法以实时进行连续的健康状况评估。

 

声发射检测是定位和监视金属结构中产生裂缝的领先方法。这种方法可以方便地用来诊断合成型飞机结构的损坏。一个显然的要求是,以简单的"通过"、"未通过"形式指示结构完整性,或者立即采取维修行动。这种检测方法使用由压电芯片构成的扁平检测传感器和光传感器,压电芯片由聚合物薄膜密封。传感器牢固地安装到结构体表面,通过三角定位能够定位装载了传感器的结构体的声活动。然后用仪器捕捉传感器数据,并以适合于窄带存储和传送的形式用参数表示这些数据。

 

因此,无线传感器模块常常嵌入到飞机的各种不同部分,例如机翼或机身,以进行结构分析,不过为这些传感器供电可能很复杂。因此,如果以无线方式供电或者甚至自助供电,那么这些传感器模块就可以更方便地使用,效率也更高。在飞机环境中,存在很多"免费"能源,可用来给这类传感器供电。两种显然和可以方便地利用的方法是热能收集和/或压电能收集。

 

在典型的飞机发动机情况下,其温度可能在几百 ºC 到 1,000ºC 甚至 2,000ºC的范围内变化。尽管这种能量大多数都以机械能 (燃烧和发动机推力) 的形式损失了,但是仍然有一部分是纯粹以热量形式消耗的。既然席贝克效应是将热量转换成电功率的根本热力学现象,那么要考虑的主要方程是:

 

P = ηQ

 

其中 P 是电功率,Q 是热量,η 是效率。

 

较大的热电发生器 (TEG) 使用更多热量 (Q),产生更多功率 (P)。类似地,使用数量为两倍的功率转换器自然产生两倍的功率,因为它们可以获取两倍的热量。较大的热电发生器通过串联更多的 P-N 节形成,不过,尽管这样可以在温度变化时产生更大的电压  (mV/dT),但是也增大了热电发生器的串联电阻。这种串联电阻的增大限制了可提供给负载的功率。因此,视应用需求的不同而有所不同,有时使用较小的并联热电发生器而不是使用较大的热电发生器会更好。不管选择哪一种热电发生器,都有很多厂商提供商用热电发生器产品。

 

通过给一个组件施加压力,可以产生压电,而压电反过来又产生一个电位。压电效应是可逆的,展现正压电效应 (当加上压力时,产生一个电位) 的材料也展现反压电效应 (当加

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top