就备份应用而言,超级电容器可能是优于电池的选择
超级电容器的设计挑战
超级电容器有很多优点,不过,当两个或更多电容器串联叠置使用时,就给设计师带来了各种问题,例如容量平衡、充电时电容过压损坏、过度吸取电流、以及大的解决方案占板面积。如果频繁需要大的突发峰值功率,那么也许需要较大的充电电流。此外,很多充电电源可能是电流受限的,例如,在电池缓冲器应用或在 USB / PCCARD 环境中。就空间受限和较大功率的便携式电子设备而言,能够解决这些问题是至关重要的。
通过 IC 的反向传导一般会引起灾难性事件。诸如串联整流二极管等外部解决办法效率不是很高,因为压降很大。肖特基二极管的正向压降较小,因此可实现较高的系统效率,但是比常规二极管昂贵。另一方面,场效应管 (FET) 提供了低导通电阻和极低的损耗。内部的 FET 控制电源通路 (PowerPath™) 电路是解决这个问题的好办法,可避免可能导致损坏的结果。倘若输入突然降至低于输出,那么凭借电源通路控制,这类 IC 的控制器可以快速彻底地断开内部 FET,以防止发生从输出返回到输入电源的反向传导。
容量平衡的串联超级电容器可确保每节电容上的电压都大约相等,而如果超级电容器中容量不平衡,就可能导致过压损坏。就小电流应用而言,具外部电路以及为每节电容器提供一个平衡电阻器的充电泵是解决这个问题的低成本方案,平衡电阻器的值主要取决于电容器的漏电流,原因如后面所述。为了限制平衡电阻器引起的漏电流对超级电容器能量存储的影响,设计师可以选择使用电流很低的有源平衡电路。容量失配的另一个来源是漏电流之差。电容器中的漏电流开始时相当大,然后随着时间推移衰减到较小的值。不过,如果串联电容器的漏电流之间是失配的,那么某些电容器再充电时可能会过压,除非设计师选择的平衡电阻器能在每节电容器上提供比电容器漏电流大得多的负载电流。不过,平衡电阻器引入了不想要的电流分量和永久性的放电电流,这给应用电路增加了负担。如果以大电流对失配的电容器充电,那么平衡电阻器也不对各节电容器提供过压保护。
就小到中功率应用而言,解决超级电容器充电问题的另一种低成本 (但复杂的) 方法是使用一个限流开关加上一些分立式组件和一些外部无源组件。在这种方法中,限流开关提供充电电流和限制,而电压基准和比较器 IC 则提供电压箝位,最后,一个运算放大器 (吸收 / 提供) 和平衡电阻器实现超级电容器的容量平衡。然而,镇流电阻器的值越小,静态电流就越大,电池运行时间就越短;当然,其显而易见的好处是节省了成本。不过,这种方法实现起来非常笨重,而且性能不高。
任何可高效地满足上述小到中电流超级电容器充电器 IC 设计限制的解决方案都会包括一个面向两节串联超级电容器和基于充电泵的充电器以及自动容量平衡和电压箝位。凌力尔特已经为这类应用开发出了一个简单但尖端的单片超级电容器充电器 IC,该 IC 不需要电感器,也不需要平衡电阻器,提供了反向隔离,并有多种工作模式,而且静态电流还很低。
一种简单的解决方案
LTC3226 是凌力尔特两节超级电容器充电器系列的最新产品。该器件是一款无电感器的超级电容器充电器,具有备份的电源通路控制器,适用于在需要短期备份电源的应用中使用的锂离子或其他低压系统轨。该器件具恒定输入电流,采用低噪声双模式 (1x / 2x) 充电泵架构,用 2.5V 至 5.5V 的输入电源给两节串联的超级电容器充电,并充电至 2.5V 至 5.3V 的可编程电容器充电电压。充电器的输入电流可用电阻器编程,高达 315mA。该器件的自动容量平衡和电压箝位功能可保持两节电池上的电压相等,因而无需平衡电阻器。这保护了每节超级电容器免受过压损坏 (否则电容或漏电流失配可能引起这种过压损坏),同时最大限度地降低了电容器上的漏电流。
LTC3226 有两种工作模式:正常模式和备份模式。工作模式由可编程电源故障 (PFI) 比较器决定。在正常模式中 (PFI 为高电平),功率通过一个低损耗外部 FET 理想二极管从 VIN 输送至 VOUT,而且充电泵保持接通状态以对超级电容器组进行 Top-off 充电。在备份模式 (PFI 为低电平),充电泵关断,内部 LDO 接通,以用超级电容器存储的电荷提供 VOUT 负载电流,同时外部理想二极管防止反向电流流进 VIN。超级电容器通过内部 LDO 提供的备份电流可高达 2A。
当输出电压处于稳定状态时,LTC3226 用非常低的 55uA 静态电流工作。该 IC 采用纤巧的 3mm x 3mm QFN 封装,基本充电电路需要很少的外部组件,占用空间也很小。该器件的 900kHz 高工作频率可减小外部组件尺寸。内部限流和热停机电路允许该器件承受从 PROG、VOUT 或 CPO 引脚到地的持续短路而不受损坏。其他特点包括 CAP PGOOD 和 VIN PFO\ (电源故障) 输出以及用于系统内务处理的 VOUT RST\ 输出。
LTC3226 采用紧凑的 16 引线、扁平 (0.75mm) 3mm x 3mm QFN 封装,在 -40?C 至 125?C 的温度范围内工作。
图 1:LTC3226 的方框图 / 应用
CHARGE PUMP:充电泵
要构成一个可与 LTC3226 相比的解决方案,需要非常复杂地组合多个 IC:一个用于超级电容器充电的降压 / 升压型稳压器、一个用于备份电源通路的 2A LDO、一个 4 通道比较器以及用于外部"理想二极管"加监视功能的背对背 FET,还有一个运算放大器和各种不同的分立式组件,以实现保护性分流和小电流平衡。另外,用户还可以选择一种"低价"方法,该方法仅对超级电容器充电,并提供备份控制 (不用两个比较器和运算放大器),不过这种方法没有充电电流限制、小电流平衡、电容器保护或电压监视功能。与更加昂贵的分立式解决方案相比,这种廉价方法可以用不那么昂贵的低值电阻器取代比较昂贵的高值电阻器和运算放大器的组合,但这种低值电阻器消耗大量静态电流,而且没有为超级电容器提供过压保护 (箝位)。
- 2A超级电容器充电器平衡和保护便携式应用中的超级电容器(11-01)
- 双向超级电容器充电器集成了备份和平衡功能(12-15)
- 石墨烯基超微型电容器研究的关键问题剖析(10-21)