微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 一种无线传感器的能量收集的实现

一种无线传感器的能量收集的实现

时间:08-31 来源:电子技术应用 点击:

器或可再充电电池充电。如果能量收集电源是间歇性的,那么这个存储元件就可用来保持稳压状态并给系统供电。上电及断电期间的输出电压排序可见于图3。VAUX引脚上的一个并联稳压器可防止VSTORE被充电至5.3V以上。

  图3:上电及断电期间的电压排序

  采用一个边长40mm的标准方形TEG,LTC3108能依靠低至1°C的ΔT来工作,从而使其适用于众多的能量收集应用。在ΔT较高的情况下,LTC3108将能够提供一个较高的平均输出电流。4 热电发生器的基本原理

  热电发生器(TEG)其实就是热电模块,它利用塞贝克(Seebeck)效应将设备上的温度差(以及由于温度差所导致的流过设备的热量)转换为电压。这一现象的逆过程(被称为帕尔帖[Peltier]效应)则是通过施加电压而产生温度差,并为热电冷却器(TEC)所惯用。输出电压的极性取决于TEG两端温度差的极性。如果TEG的热端和冷端掉换过来,那么输出电压就将改变极性。

  TEG由采用电串联连接并夹在两块导热陶瓷板之间的N型掺杂和P型掺杂半导体芯片对或偶所构成。最常用的半导体材料是碲化铋(Bi2Te3)。图4示出了TEG的机械构造。

  图4:TEG的构造

  有些制造商将TEG与TEC区分开来。当作为TEG销售时,通常意味着用于装配模块内部电偶的焊料具有较高的熔点,故可在较高的温度和温差条件下工作,因而能够提供高于标准TEC(其最大温度通常限制在125°C)的输出功率。大多数低功率能量收集应用不会遇到高温或高温差的情况。

  TEG的尺寸和电气规格多种多样。大多数常见的模块都是方形的,每边的长度从10mm到50mm不等,厚度一般为2mm~5mm。

  对于一个给定的ΔT(与塞贝克系数成比例),TEG将产生多大的电压受控于诸多的变量。其输出电压为10mV/K至50mV/K温差(取决于电偶的数目),并具有0.5Ω至5Ω的源电阻。一般而言,对于给定的ΔT,TEG所拥有的串联电偶越多,其输出电压就越高。然而,增加电偶的数目也会增加TEG的串联电阻,从而导致在加载时产生较大的压降。制造商可以通过调整个别半导体芯片的尺寸和设计对此进行补偿,以在保持低电阻的同时仍然提供较高的输出电压。

        测量和控制所需的超低功率无线传感器节点的激增,再加上新型能量收集技术的运用,使得由局部环境能量而非电池供电的全自主型系统成为可能。

  能量收集无线传感器系统简化了众多领域中的安装和维护工作。

  能量收集的好处是显而易见的,不过,有效的能量收集系统需要使用智能型的电源管理方案,以把微弱的免费能量转换为一种无线传感器系统可以使用的形式。

  1 归根到底是占空比的问题

  许多无线传感器系统的平均功率消耗非常之低,从而使其成为可利用能量收集技术进行供电的主要候选对象。很多传感器节点用于监视缓慢变化的物理量。所以可以不经常进行测量,也不需要经常发送测量数据,因此传感器节点是以非常低的占空比工作的。相应地,平均功率需求也很低。

  例如:若一个传感器系统处于唤醒状态时的需要3.3V/30mA(100mW)的功率,但在每秒时间里只运行10ms,那么其所需的平均功率仅为1mW,假定在传送突发的间隔期间不工作时,传感器系统电流降至数μA。倘若这个无线传感器只是每分钟(而不是每秒钟)进行一次采样和传送,则平均功率将骤降至20μW以下。由于大多数形式的能量收集均提供非常小的稳态功率(通常只有几mW,有时甚至仅几μW),因此这种功率需求量的差异是很重要的。应用所需的平均功率越低,就越有可能采用收集能量来供电。

  2 能量收集源

  可供收集的最常见能量源是振动(或运动)、光和热。用于所有这些能量源的换能器都具有以下的共同特性:

  a 它们的电输出未经稳压且不适合直接用于给电子电路供电

  b 它们可能无法提供一个连续和不间断的电源

  c 它们往往只产生非常低的平均输出功率(通常在10μW至10mW)

  如果想把此类能量源用于给无线传感器或其他电子线路供电,就必需针对上述特性进行明智而审慎的电源管理。

  3 电源管理:迄今为止在能量收集中仍然缺失的一环

  由收集能量供电的典型无线传感器系统可分解为5个基本构件,如图1所示。除了电源管理构件之外,所有这些构件成都已经用了有一段时间。比如:运行功率仅数μW的微处理器以及功耗同样非常之低、具成本效益的小型射频(RF)发送器和收发器已被广泛使用。低功率的模拟和数字传感器也是无处不在。

在实现这种能量收集系统链路时,缺失的一环始终是可以靠一个或多个常见免费能源工作的功率转换器/电源管理构件。能量收集的理想电源管

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top