微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 自适用控制A/D转换编码电路的设计与应用

自适用控制A/D转换编码电路的设计与应用

时间:05-27 来源:电子设计应用 点击:

    依此类推,经n次循环放大后,有效信号达(5/3)×2 n VE,而误差一直为-2E0-(1/3)E1-(2/3)E2或-2E0-(2/3)E1-(1/3)E2,仍然是信号采样周期结束时所获得的初始误差采样值。经n次循环放大后,信号被放大到满刻度的1/2~1倍。其值已达数伏之高,而输出误差总额却不超过300μV,从而实现了极高的信噪比。

    自动增益控制通过控制循环放大的次数来实现,循环放大次数取决于以下两个条件之一:第一,通过溢出判断电路OP3、OP4判断输出电压,如果输出已超过满刻度的1/2时,应停止再进行循环放大,否则,下次循环的输出直将溢出;第二,循环放大次数已超过规定的限值时(一般取n≤18,循环增益≤2 18,约110dB,说明被测信号太弱,已超出电路的处理能力,应停止循环。)

   2 循环编码式A/D转换的实现

   利用电子开关S8和S9分别将基准电压+VR和-VR加到运放的反相输入端,可在放大阶段结束后接着对输出信号进行循环编码式A/D转换。A/D转换电路的参考基准电源VR=+5V,它同时也代表放大电路的满刻度值。主运放OP1的反相放大倍数为-1,同相放大倍数为2。

    在循环编码过程中,S7、S11和S6、S10两组开关轮流切换,以完成信号的循环传递。整个循环编码过程中的误差仍然是自动补偿的,这里不再赘述。在OP1的输出端接了一个极性检测器OP2.放大阶段结束时,运放OP1输出被用于循环放大后的信号(已保存于C1或C2中),极性检测器OP2同时产生一个二进制编码B0,它表示被编码电压的极性,即A/D转换结果的二进制编码的符号位。各编码周期的二进制编码输出位Bi及S8、S9的状态选择逻辑如下:

    Vo(i)>0时,取Bi=1,下次S8闭合,基准源+VR加到运放反相输入端,运放执行以下运算:

    Vo(i+1)=2Vo(i)-VR

    Vo(i)<0时,取Bi=0,下次S9闭合,基准源-VR加到运放反相输入端,则执行:

    Vo(i+1)=2Vo(i)+VR

    转换结果为二进制小数形式,Bo为二进制编码结果的符号位,B1至BN分别表示最高至最低位数值位。B0=1时,被测信号为正,B1至BN表示转换结果的原码;B0=0时,被测信号为负,B1至BN为二进反码形式。每转换一位需要一个控制周期,转换的总周期数决定了A/D转换的分辨率。需指出,上述循环编码A/D转换电路与普通逐次逼近式A/D转换在理论上是一致的(证明过程略)。

   3 时序控制电路设计

    该电路还需设计一个时序控制电路与之配合,以产生各操作周期所必需的时钟节拍。一次完整操作最多需33个时钟节拍。图2给出了模拟开关的控制时序。可采用通用门器件或可编程门阵列构成的硬件时序逻辑电路来实现,也可应用微处理器控制产生所需时序。硬件实现图2的控制时序可获得较高的整机速度,约为几μs~μs。这主要取决于采样保持器及硬件时序逻辑电路的工作速度 。用微处理器产生所需时序时,完成图2所示的一个时钟节拍的电子开关状态设定约需数条至十数条指令周期,因而速度较低。因此只适用于500μs左右的低速数据采集系统。

    某离子浓度测定仪的循环放大与编码电路采用了8031单片机控制接口电路,应用P1口输出8位控制数据以控制S1~S11,T0、T1接8031的状态测试端。为提高程序执行效率,提高电路工作速度,程序设计采用简单的顺序执行方式,这种方式所实现的图2时序控制周期可能是非等时间间隔的,但这不会影响控制时序的执行性能。单片机系统时钟为6MHz,指令周期TCY=2μs,一次数据采集转换约需要390个TCY,即约需时780μs。

   4 结束语

    在本文所述的自适应控制A/D转换编码电路中,A/D转换编码与信号放大共用一套电路,工作过程由数字电路或微处理器控制,结构简单,对信号的自适应能力强,可实现自动增益控制、失调与温漂的自动补偿、A/D转换循环编码控制,工作稳定可靠。在中速以下数据测量应用场合,该电路具备较高的性能价格比,特别适宜于各种单片机智能仪器、移动型微数字检测设备及虚拟仪器系统使用。在实际应用中,应注意采样保持误差对系统精度的影响。用微处理器生成控制时序时,由于周期较长,因而应选用低顶降率的采保器,采用其它硬件电路产生控制时序时,周期较短,则应选用低获取时间的采保器。

    在某离子浓度测定仪的应用实例中,其输入信号为30&mu;V~200mV,A/D转换字长为12位,平均信号处理时间为600&mu;s。OP1与OP2笔者选用AD707极低漂移运放(偏置电压15&mu;V、偏置电压漂

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top