基于framebuffer技术的DVI显示驱动程序的开发
引言
DVI是Digital VisualInterface(数字视频接口)的缩写。在嵌入式电子领域,像DVI这样的高清接口应用越来越多,很多嵌入式产品采用H.264视频编码技术,支持播放H.264格式的720P分辨率的视频文件,这就需要至少1024×768分辨率的显示输出设备。
MX51是飞思卡尔半导体的基于ARM Cortex-A8内核的高端ARM嵌入式多媒体处理器,支持720P视频多种格式的硬解码,可以用来开发高清机顶盒、上网本等产品,很多情况下需要集成DVI这样的高清视频端子。
在嵌入式电子产品中,Linux操作系统占有越来越多的市场份额。本文采用Linux2.6.28内核和MX51作为系统的软、硬件平台,详细论述了基于framebtffer技术开发DVI显示驱动程序的方法。
1 DVI概述
DVI接口只在一些高端显示器上可以看到,一般常见的液晶显示器只有VGA接口。VGA接口显示的是模拟信号,而DVI接口显示的是数字信号,它传输没有经过压缩的数字信号,最高速率可达4.9 Gbps,对高清视频显示可以达到较好的保真度,减少模拟信号传输时的信号损失。
DVI基于TMDS(Transition Minimized Differential Signaling,转换最小差分信号)技术来传输数字信号,TMDS运用先进的编码算法把8位数据(R、G、B中的每路基色信号)通过最小转换编码为10位数据(包含行场同步信息、时钟信息、数据DE、纠错等),经过DC平衡后,采用差分信号传输数据。DVI和LVDS、TTL相比有较好的电磁兼容性能,可以用低成本的专用电缆实现长距离、高质量的数字信号传输。
2 硬件接口
本设计采用的硬件平台是基于飞思卡尔半导体的MX51多媒体应用处理器开发板。该处理器集成了多种外设接口,其中包括两个液晶显示控制器(LCDC)及其接口,可以连接各类LCD,分辨率最大支持1280×800像素。通过MX51的LCD1接口,外扩德州仪器公司的TFP410芯片实现DVI视频输出,MX51的高清720P视频解码能力需要较大分辨率的显示输出设备。图1为MX51的LCD1接口与TFP410的连接图。
图1中的TX2±、TX1±、TX0±、TXC±信号是DVI视频输出信号4对,8个信号。DATA[23:0]是视频数据输入信号,对应MX51 LCD1的DATA[23:0];DE、VSYNC、HSYNC、IDCK±等时钟信号分别对应LCD1的相应的引脚。SCL、SDA是I2C总线时钟和数据信号,接MX51 I2C接口的2个引脚。以上硬件电路连接,可实现MX51输出高清视频到DVI芯片,再通过外接LCD显示。MX51处理器内部集成的LCD控制器包括如下主要寄存器:
①LSSAR寄存器。设置显示缓冲区的首地址。
②LSR寄存器。设置显示缓冲区的大小。
③LPCR寄存器。设置像素时钟频率PCD、同步时钟极性FB_SYNC_CLK_INVERT、OE信号极性FB_SYNC_OE_ACT_HIGH、垂直信号时钟极性FB_SY NC_VERT_HIGH_ACT、水平信号时钟极性FB_SYNC_HOR_HIGH_ACT。
④LHCR寄存器。设置行同步信号的hsync_len、left_margin和right_margin。
⑤LVCR寄存器。设置帧同步信号的vsync_len、upper_margin和lower_margin。
⑥LPCCR寄存器。设置屏幕的显示亮度,LPCCR的低8位控制PWM的脉冲高电平占空比,调节范围为0x00~0xFF。
3 Linux的帧缓冲设备
3.1 framebuffer机制
framebuffer(帧缓冲)是出现在Linux2.2.xx之后版本内核的一种驱动程序接口,在Linux体系中它居于上层应用程序和底层显示设备之间。framebuffer屏蔽了不同显示设备间的差异,将显示设备抽象为帧缓冲区,它是一种供用户态实现直接写屏的抽象设备。
framebuffer可以看成是显存的一个映像,用户通过内存映射将其映射到进程的地址空间后,通过对显示缓冲区的读写操作可直接控制LCD的屏幕输出。
frameBuffer设备驱动主要基于linux/include/linux/fb.h和linux/drivers/video/fbmem.c这两个文件。fb.h中包含了与帧缓冲设备相关的重要的数据结构。fbmem.c是framebuffer机制的核心程序,它为上层应用程序提供了通用接口,同时也为下层特定硬件提供了接口。其内的函数可对具体硬件进行操作,比如对寄存器进行设置,对显示缓冲进行映射等。
3.2 几个重要的数据结构
(1)struct fb_info
这个结构是Linux为帧缓冲区设备定义的驱动层接口,它包含了关于帧缓冲设备属性和操作的完整描述,部分成员定义如下:
其中,var记录用户可以修改的显示控制器参数,包括屏幕分辨率和每个像素的位宽等;fix记录用户不能修改的显示控制器参数;cmap为当前的颜色表;fbops指向对底层硬件操作的函数集;dev表示帧缓冲设备;screen_base为I/O映射的虚拟基地址。
(2)struct fb_ops
该结构提供了指向底层操作的函数指针,其成员函数最终与LCD控制器硬件打交道,这些函数需要驱动开发者根据LCD控制器的硬件设置及LCD显示屏的硬件参数进行设计。该结构部分成员定义如下:
其中,fb_check_var用于检查可变的屏幕参数,并调整其为硬件支持的值;fb_set_par根据屏幕参数设置具体读写LCD控制器的寄存器以使其进入相应的工作状态,fb_setcolreg设置color寄存器来实现伪颜色表和颜色表的填充。
(3)struct fb_var_screeninfo
这是fb_info的成员结构体。它记录了帧缓冲设备和指定显示模式的可修改信息,包括屏幕分辨率、每个像素的位宽、帧延时、行延时等。
(4)struct fb_fix_screeninfo
这是fb_info的成员结构体,它描述显示卡的属性,并且在系统运行时不能被修改,例如缓冲区的首地址、长度等。当一种模式被设定后,内存信息由显示卡硬件给出,内存的位置等信息就不可修改。
MX51将LCD控制器直接嵌入到处理器芯片内部,这为嵌入式系统关于显示功能的扩展提供了直接接口。LCD控制器驱动是DVI设备驱动的核心,它是一个标准的framebuffer设备驱动。设计驱动程序,首要的是配置LCD控制器,设置帧缓冲区,这在很大程度上要依赖于上述的数据结构,驱动设计需填写相关结构体并完成系统指定的接口函数。
- 高清嵌入式系统中的DVI驱动开发(01-15)
- 独立式多分辨率VGA/DVI压缩存储系统(06-05)
- Android 利用addView 动态给Activity添加View组件(09-12)
- 笔记本电脑上VGA与DVI接口的区别(12-15)
- VxWorks实时操作系统下MPC8260ATM驱动的实现(11-11)
- Linux内核解读入门(11-09)