微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于TMS320C6711B DSP的中心定位算法设计

基于TMS320C6711B DSP的中心定位算法设计

时间:09-30 来源:电子技术应用 点击:

垂直于边缘方向的像素变化剧烈。从这个意义上说,提取边缘的算法就是检测符合边缘特性的边缘像素的数学算子。

  由于地球的辐射存在不均匀性,所以地平高度与采用的地平检测方式有关。其差别在于对应不同的地平检测方式,具体的地平高度随地球辐射变化程度不同。本文采用比例门限法检测地平圈。具体算法如下:以粗略地心为起点,以0.5度为间隔取720条射线。考虑到只需扫描地球辐射过渡带,所以每条射线的扫描起点距粗略地心为100个单位,间隔一个单位进行一次采样。由于该采样点的坐标不是整型,所以利用双线性内插得到采样点的灰度值,依次判断采样点,一边记录灰度最大值,一边判断该灰度值是否小于最大值的一半。当条件成立时,扫描停止,算出灰度值为最大值的50%所对应的坐标,即地平点坐标。扫完720条射线后,所有的地平点构成一个地平圈。该算法对接近过渡带的点进行双线性内插,提高了程序执行效率。检测出的地平点坐标是浮点数,提高了地平判定精度,有利于减小测量地心的误差。

  2.4 精确定中心

  精确定中心是算法中最关键的部分,方法的好坏直接影响地心的精度。一般有霍夫变换法、面积积分和三点均值法等。精确定位采用面积积分法。根据微积分理论,对于一个封闭区域D,其重心坐标可用如下公式得到:

  

  式中,x和y代表单元点的坐标,ρ(x,y)代表单元点的密度,D代表整个区域。

  当ρ(x,y)=1时,区域的重心和形心重合,S表示区域的面积。为了能够用计算机计算区域的中心位置,必须对上面的公式离散化。离散化后的公式为:

  

  式中, R(θ)表示对应θi~θi+1范围内的幅值变化规律。

  3 实验结果

  把CCD拍摄到的图像数据送入该系统处理,每处理完一帧图像就会从串口输出一个姿态角信息。表1是四帧图像的处理结果。从表1可以看出算法的精度优于0.1的指标要求,算法处理时间约为0.49秒,满足一秒处理一帧的实时要求。

  

  实时图像处理系统,实现了图像采集、实时数据处理及输出。系统具有很好的升级性和扩展性。采用DSP处理器,增强了系统的处理能力,提高了系统处理速度,保证了工作的实时性要求。采用贴片器件,既减小了PCB板的尺寸,又增强了系统的可靠性。实验证明,中心定位算法通过对原始图像滤波、判断目标是否进入视场、边缘检测和精确定中心大大提高了地平仪的测量精度。

  25MHz时钟信号经过ICS501倍频后,产生150MHz和100MHz时钟信号,经三态门总线缓冲器74LVTH125输出后得到CPU工作时钟及同步接口所需的工作时钟。C6711的7个JTAG仿真脚

、TMS、TDI、TDO、TCK、EMU1和EMU0连接到一个14脚双排插头上,可与仿真器相连,以进行系统调试和程序下载。

  1.5 外部存储器设计

  C6711访问外部存储器必须通过EMIF。EMIF不仅有很高的数据吞吐率,而且还有很强的接口能力,可以与目前所有类型的存储器直接接口。设计采用三种类型的存储器:Flash ROM、双口RAM和同步动态存储器SDRAM。Flash ROM 是现场可擦除、掉电后可保持数据的存储器,用来固化程序和保存掉电后需要保存的数据;双口RAM用来存储一帧图像数据;SDRAM运行速度快,用来存放实时运行程序和临时数据。本系统Flash ROM采用SST39VF040,且配置在CE1空间。双口RAM采用IDT70V28,且配置在CE2空间。选用HY57V653220作为SDRAM,配置在CE0空间,这样的配置与引导方式相配合。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top