微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 灵巧划分在WIMAX射频中的应用

灵巧划分在WIMAX射频中的应用

时间:03-06 来源:ADI网站 点击:

对节省生产测试时间有所帮助。采用数字通用测试仪替代昂贵的混合信号测试仪可以把测试成本降低15%~20%。

4. 测试覆盖率工具允许数字设计工程师建立故障覆盖率扫描链,从而简化生产测试。然而,混合信号测试需要在几微伏范围内测量各种模拟技术指标。混合信号设计需要的测试时间至少是纯数字电路设计的五倍。在测试仪上并行处理可以缩短测试时间。假设采用一种积极的测试程序方法——混合信号器件的测试成本将会提高两到三倍。

5. 集成的数据转换器内核通常是由具有相关版权和/或一次性工程费用(NRE)的第三方和/或内部机构开发的知识产权。与纯数字ASIC解决方案的设计工具套件相比,混合信号设计所采用的设计和支持工具也是一笔附加投资。设计新的混合信号ASIC所需要的一套开发工具比纯数字ASIC所用工具要多50万美元以上。

图3:混合电路模拟和数字的灵巧划分方法

图3:混合电路模拟和数字的灵巧划分方法

此外,模拟电路不会像数字电路那样随着工艺线宽的缩小而成比例缩小。图4所示,混合信号IC的成本会随着特征尺寸的减小而增加。图中将成本曲线相对180nm纯数字ASIC的成本做了归一化处理。历史上,数字ASIC工艺特征尺寸每次从一代演进到下一代,其成本都会随之降低三分之一。与此相反,混合信号IC的成本随着混合信号裸片面积的减小反而增加。这是因为存在这样一个事实,即受噪声限制的模拟电路的成本不随光刻工艺线宽的减小而降低,而数字电路的成本会随着工艺线宽减小呈平方关系降低。

图4:灵巧划分所带来的的成本效益

图4:灵巧划分所带来的的成本效益

新工艺设备投资和制造工艺复杂度的增加导致每平方毫米的裸片成本出现一代比一代净增长的趋势。而数字电路的工艺尺寸成比例降低使每只晶体管的成本进一步降低。因为模拟电路的成本并不随着工艺尺寸减小而成比例地减小,所以混合信号产品总体成本开始时保持平稳,后来却随着工艺尺寸的减小而增大。

在大规模产品市场中,企业必须满足市场定价要求的同时保持价格竞争力,从而为投资者提供合理回报。如果一家公司的成本是一流竞争对手的两倍时,就必须迅速采取新的手段或新的策略。尽管与混合信号设计相关的所有挑战仍将继续存在,但灵巧电路划分的众多好处中也包括利用并不总是适合于模拟/RF电路的摩尔定律的所有优点来显著地降低系统成本。

除了每个器件成本的增加,没有选择最优工艺和较长的投放市场时间的机会成本都注定会影响项目的投资回报。准备就绪的模拟和混合信号内核的可用性要比数字工艺晚大约两年,或者差不多有一代的差距,而用于批量生产的内核要达到可用性大约需要四年时间,而灵巧划分方法可以使系统供应商根据其需要选择最优化工艺,而不受经过认证的模拟内核的可用性约束。机会成本与非最优化工艺的选择关系很大。例如,在宽带无线领域,制造商已经发布了90nm的内核设计。90nm数字SoC设计和130nm的产品之间的成本差距竟高达200%以上!而对于65nm的内核设计,成本差距可能高达多倍。

这里推荐的划分方法提供了一种将节省下来的时间和资源重点用到开发下一代产品的机会——从而可能研发出比竞争对手超前一代的产品投放市场,因为他们把有价值的资源耗费在解决混合信号ASIC设计的固有难题上。

向数字射频基带接口转移带来的性能优势

灵巧划分凭借在开发、支持和单位成本方面的成本优势能够提供高性能的系统解决方案。

对于具有高峰均比的OFDM系统来说,在RF器件上实现的高线性度以及在数字基带(DBB)上的先进同步和信道估计算法绝不能因受ADC和DAC的动态范围的限制而作出折衷。在存在噪声、信道衰落和干扰条件下,为了实现更好的性能,必须仔细考虑对裕量的管理。

随着对AGC环路的集成,ADC的动态范围能够与RF前端的能力相匹配,从而使像64QAM这样高的数据速率成为可能。因为DBB与RF芯片之间存在复杂的相互影响,所以许多供应商都在努力推出它们的参考设计。另外,他们利用像符号到符号AGC这样的先进技术来改进移动环境中常见的系统的信道衰落性能。与分立式AGC环路(例如,用两颗独立芯片实现AGC算法)不同,这里推荐的灵巧划分能够实现快速的AGC收敛,从而使DBB可以将更多时间用于信道估计和同步,从而把系统的性能改善许多个分贝,相当于进一步提高了系统的动态范围和传输速率。

为了消除来自相邻或相邻信道的信号干扰,需要采取滤波措施。为了解决这个问题,必须在滤波器的线性度和复杂度之间做出谨慎的折衷。对于低成本零中频(ZIF)体系结构,使用数字滤波器可以实现最终的信道选择性。滤波电路如同增益电路,必须分布在RF和后续数字滤波器之间。灵巧划分能够最优化模拟滤波

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top