微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于MSP430的便携式运动量及生理参数监测仪设计

基于MSP430的便携式运动量及生理参数监测仪设计

时间:02-04 来源:电子产品世界 点击:

三维加速度传感器是本监测仪前向通道中的理想运动传感器元件。

  如图1所示,信号调理单元的作用是将传感器输出的微弱电信号(通常为电压信号)不失真地放大或调整到能够直接由A/D转换模块采样的幅度足够的电压信号,且信号调理单元对其前级的传感器和后级的A/D转换模块的影响要尽可能的小。

  信号调理单元具体包括信号放大电路、滤波电路及精密电压基准电路等,主要实现信号的放大、整形及滤波等功能。信号调理单元中的信号放大电路应具有较强的共模抑制和差动放大能力,实际共模抑制比较高,输入阻抗较大,失调和温漂较小,这些都能有效减小信号放大电路对传感器输入信号的影响,减少温度误差。同时信号调理单元中的滤波器应采用同相结构的精密运放和RC网络组成高阶有源滤波器,这样既能提供一定的增益和缓冲作用,又可以减小对后级尤其是A/D转换的影响。

  信号调理单元是本监测仪中模拟电路的主要部分,其调整后信号的精度直接决定着系统内可采集到的人体运动信号的精度,其电路结构和复杂程度也直接关系到系统的整体功耗和体积。因此信号调理单元的设计更要符合微功耗和微型化设计要求,能够在单电源下工作,其信号放大范围要与A/D转换所需的信号幅度一致,在电路结构上应力求简单,集成度要高,不宜采用分离元件太多的设计方案。

  生理参数监测模块

  从系统整体设计和降低设计难度的角度,血氧饱和度、心电信号、心率、体温等人体重要的生理参数可以通过市面上已有的一些功能模块直接获得而不必自行设计。如目前市面上已有供二次开发使用的监测血氧饱和度、心率等的集成功能模块(简称为数字式血氧模块),其内往往已集成了信号处理内核(如Dolphin公司OEM-701模块),这种数字式血氧模块能够通过探头直接检测人体的血氧饱和度、心率、体温等数据,支持串行接口的输出方式。

由于心电信号的检测电路一般都较为复杂,因此也可以采用市面上已有的心电信号检测的功能模块供二次开发使用。具体如BT007七通道心电模块,能输出同步七通道心电波,具有四级程控增益,三级滤波方式(诊断方式、监护方式和手术方式),具有起搏脉冲抑制功能和导联脱落报警功能,其检测的心电信号结果也可以通过串行接口输出。

  本监测仪的中央控制单元F149微控制器内包含有两个串行通信接口-USART0和USART1,故可以直接接收数字式血氧模块和心电模块输出的血氧饱和度、心率及心电信号的数据。这种直接采用已有集成式功能模块进行二次开发的设计思路,可以有效降低本系统的设计难度和提高系统集成度。

  数据存储单元

  由于监测仪需要存储大量的现场数据,对数据存储容量的要求很高,存储密度较低的EEPROM、SRAM等均不能满足要求。ATMEL公司的AT45系列SPI串行接口FLASH存储器的接口电平与F149相匹配,硬件上能直接连接。采用SPI串行三线接口,减少了I/O资源占用,能有效降低系统所占空间,提高系统可靠性,降低开关噪声。AT45系列存储器芯片的内部还包括2个SRAM类型的数据缓冲区,每个缓冲区的容量均与主存储器阵列中一个页面的存储容量相同。这样即使在存储器被烧写的过程中也允许接收数据,这就为数据存储的实时性和可靠性提供了硬件保证。

  本监测仪中也可以采用并行的FLASH存储器,如三星电子的K9xxGxxxxM系列NAND FLASH芯片,能够提供4224M位的存储容量。这种高存储密度、大容量的并行FLASH数据存储芯片特别适用于本系统需要存储大量实时的运动数据、生理数据的应用环境。

  数据存储程序

  数据存储程序设计时要重点考虑微功耗和实时性要求,即数据存储程序应是基于中断程序结构的,通过A/D中断服务子程序来实时采集和存储来自于运动监测模块的三维运动数据,通过2个串行通信接收中断服务子程序来分别接收和存储来自于血氧模块和心电模块的血氧饱和度、心率、体温和心电信号等生理数据。这些运动和生理数据首先由F149微控制器放置于其内的2KB数据RAM内,并通过页写入方式存储到FLASH数据存储芯片中。

  由于来自于运动监测模块的三维运动数据是多通道、连续变化的大量数据,考虑到数据采集过程中的微功耗和实时性要求,对F149的A/D转换模块采用序列通道单次转换模式较为合适,其时序控制简单,灵活性高。同时采用Timer_A定时器为A/D转换模块定时,使其工作在增计数模式,其定时时间对应于采样频率。

  用于接收生理数据的串行通信接收子程序也是基于中断响应模式的,由32768Hz的时钟晶振提供串行通信的时钟信号源,通过2个串行通信接收中断的响应子程序分别将接收到的血氧饱和度、心率、体温和心电数据填充到系统的数据RAM中。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top