开关电源功率因数校正的DSP实现
数字控制,中断程序int2负责3个输入的采样及电流回路的PI控制,另一个中断程序int3负责电压回路的PI控制及陷波滤波。图4是主程序控制流程图,图5是采样周期图。其中int2的中断优先级高于int3,所以若int3没完成,而int2中断发生时,int3将悬挂直到int2中断程序运行结束才继续运行。因为电压回路的变化比较缓慢,所以一个周期的延时不会影响控制效果。设置比较控制寄存器,在T1下溢的时候写入新的比较值,结合通用定时器周期寄存器T1PR的值,产生新的占空比的PWM波,控制与之相连的开关管的动作。从图5中我们也可以注意到,int2的中断程序(包括3个采样和一个PI程序)必须在半个电流采样周期,即25μs之内完成。根据前面给出的DSP的性能指标,这个目标完全可以达到。
图4 主程序流程图
图5 采样周期图
另外,在实际应用中,采用的是积分分离的PI算法,把PI的输出值限定在一定的范围之内,避免使系统产生很大的超调量而引起系统振荡。还加入了软启动程序,在程序刚开始的时候逐步加大Vref的值,从而达到开关电源的软启动要求。
因为像Kp,Ki及滤波器系数等这些参数都是浮点数,而所用的是16位的芯片,所以用DSP实现以上算法,还需要解决浮点数和定点数之间相互转换的问题。可以用不同的Qn值来表达不同范围和精度的浮点数,其中n表示16位中小数点之后的位数。例如,Q0可表示-32768到32767的整数,而Q15可表达-1到0.9999695之间精度为1/32768的实数[2]。不同的Qn值之间需要经过移位,转换为相同的位数才能进行比较和加减运算。
5 实验结果
程序编译通过后,烧入片内flash,外加简单的外围电路,就可以进行实验验证了。我们采用的是Boost电路的拓扑结构,接电阻负载,输入电压220V,输出电压385V,得到的输入电压电流波形如图6所示。用功率表测得PFC电路的输入功率为545W,输出功率为513W,可以计算出PFC电路变换效率为94.1%。在相同测试条件下,用功率因数表测得的PFC电路的功率因数为0.983。图7所示的是软启过程。
图6 BOOSTPFC电路输入电压电流图
图7 软启动波形图
6 结语
本文探讨了开关电源功率因数调整的全数字实现方案,实验证明了该方案的可行性。目前,对开关整流器件采用DSP控制的研究开展的还不多,主要是由于相对于专用的集成芯片DSP的价格比较高昂,而且成熟的控制算法难以获得。然而,随着DSP芯片价格的不断降低和控制算法的研究不断深入,相信开关整流器件数字控制的时代很快就会到来。
- 数字信号处理器TMS320F241在变频空调中的应用(04-28)
- 用数字信号处理器优化视频编码器(03-11)
- DSP混合编程关键技术研究(04-16)
- 基于DSP的心电监护模块设计(11-30)
- 用DSP实现高功率因数PWM整流器的控制(01-23)
- 基于DSP的滞环跟踪型有源电力滤波器数字控制系统(02-21)