微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > μC/OS-II软件定时器管理算法分析及改进

μC/OS-II软件定时器管理算法分析及改进

时间:11-15 来源: 点击:

1、概述

  软件定时器是一种软件措施,通过它可以使一项特定的任务在给定的时间段后被执行。软件定时器广泛地应用于内核设计和应用程序设计中,例如,一个进程使用软件定时器等待其他的进程完成特定的动作,以使任务间的操作同步等,因此,对软件定时器的高效实现对提升系统的响应效率是至关重要的。

  作为一种基础的软件措施,μC/OS-II[1]的 V2.86版本中增加了对软件定时器的支持。使用μC/OS-II提供的软件定时器,应用程序可以方便地完成特定的定时任务。本文对μC/OS-II的软件定时器的实现机制进行简要分析,然后提出了对μC/OS-II的软件定时器的实现进行改进的方法。

2、μC/OS-II软件定时器的实现机制及算法分析

  2.1 μC/OS-II软件定时器的核心数据结构

   μC/OS-II实现软件定时器的核心数据结构是 OS_TMR,其定义如下:

  typedef struct os_tmr {

  INT8U OSTmrType; /*应该设置为OS_TMR_TYPE*/

  OS_TMR_CALLBACK OSTmrCallback; /*指定时间到达时要执行的回调函数*/

  void *OSTmrCallbackArg; /*传递给回调函数的参数*/

  void *OSTmrNext; /*软件定时器链表管理指针*/

  void *OSTmrPrev;

  INT32U OSTmrMatch; /*当OSTmrTime == OSTmrMatch 时表示定时器时间到*/

  INT32U OSTmrDly; /*对于周期性定时器,再次启动定时器前的延时时间*/

  INT32U OSTmrPeriod; /*对于周期性定时器,时钟周期的长度*/

  INT8U OSTmrOpt; /*选项 (如 OS_TMR_OPT_xxx 等) */

  INT8U OSTmrState; /*定时器的状态*/

  } OS_TMR;

  每个 OS_TMR结构的实例定义了一个软件定时器,多个软件定时器通过结构中的 OSTmrNext和 OSTmrPrev构成一个定时器双向链表。

  为了提高对软件定时器的管理效率,μC/OS-II引入了"定时器轮"数据结构,所谓定时器轮,是将定时器实例中的 OSTmrMatch域的值参照某一个预先设计的数(称为轮数)进行求余运算,并根据求余结果将定时器进行分组以改善对到期定时器的命中率。定时器轮数缺省配置如下:

  typedef struct os_tmr_wheel {

  OS_TMR *OSTmrFirst; /*指向第一定时器的指针*/

  INT16U OSTmrEntries; /*该定时器轮中的定时器项数*/

  } OS_TMR_WHEEL;

  缺省配置下,μC/OS-II 定义的轮数为8,因此,μC/OS-II 的定时器轮为如下的一个数组:

  OS_TMR_WHEEL OSTmrWheelTbl[8];

  例如,在某一个特定的时刻,此处假设时刻5,系统中有定时时间为2ticks、4ticks、5ticks、32ticks、161ticks、357ticks的软件定时器,那么,这些定时器将在时钟滴答分别为7、9、10、37、166、362时到期,则此时系统的定时器轮的实例如图 1所示:

  2.2 μC/OS-II软件定时器的处理算法分析

  μC/OS-II对定时器的超时处理在一个称为"uC/OS-II Tmr"的任务中进行,该任务是通过信号量 OSTmrSemSignal来激活。基于以上定义的定时器轮,μC/OS-II对定时器的处理算法如下:

  static void OSTmr_Task (void *p_arg)

  {

  for(;;)

  {

  等待OSTmrSemSignal 信号量并获得OSTmrWheelTbl 的访问权;

  STmrTime = OSTmrTime+1,并对8 求余后得到对应的定时器轮项索引index;

  for OSTmrWheelTbl[index]定时器轮中的每一个定时器ptmr,do

  {

  if (OSTmrTime == ptmr->OSTmrMatch) {

  执行ptmr 软件定时器中的回调函数;

  对于单次定时器,从定时器轮中删除该时钟;

  对于周期性定时器,则重置该定时器的OSTmrMatch 值;

  }

  }

  释放对OSTmrWheelTbl 的访问权;

  }

  }

  2.3 μC/OS-II的定时器处理算法的效率分析 采用上面的例子,对μC/OS-II的定时器处理算法效率进行一个简单的分析:在下一次时钟滴答,也就是时钟滴答 6时,没有定时器到期,而 for循环必须对每个时钟进行检查,类似的情况还发生在自时钟到达 10以后的多个检查中。根据系统中的定时器的数量,这种无谓的检查将占用大量的 CPU时间。

3、对μC/OS-II的定时器管理算法的改进

  3.1 改进以后的数据结构设计

  对μC/OS-II的定时器管理算法进行改进的主要目标是:要么不对定时器进行检查,要检查则一定有定时器到期[2]。为了达到这个设计目标,需要对μC/OS-II的定时器轮进行重新设计。采用同样的 OS_TMR数据结构和 OS_TMR_WHEEL定时器轮结构,但是,对定时器轮的每一个项的功能进行重新规划:

(1)定时器轮的第 1项到第 7项,即 OSTmrWheelTbl[1]到 OSTmrWheelTbl[7]的定时器轮,分别表示将在此后的第 1个时钟滴答到第 7个时钟滴答将到期的定时器项,此时,每个定时器结构的 OSTmrMatch中的值表示需要经过多少个时钟滴答该定时器项将到期。在同一个定时器轮中的多个定时器项通过 OSTmrNext和 OSTmrPr

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top