微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP和SOPC数字信号发生器的设计

基于DSP和SOPC数字信号发生器的设计

时间:01-05 来源: 点击:

DDFS的频率输出公式:

式中:N为相位累加器的位宽;M为频率字位宽;Fclk为系统时钟信号。

DDFS通过数控振荡器产生频率、相位可控的正弦波。其优点体现在无需相位反馈控制,频率建立及频率切换较快,可编程且全数字化,控制灵活方便,输出相位连续。如果在相位累加器的位数N足够大时,理论上可以获得很高的分辨精度,应用DDFS还可以产生其他多种调制信号,因此具有极高的性价比。

2.2 硬件模块设计与仿真

利用DSP BuiIder进行DSP模块设计是SOPC技术的一个组成部分。关键设计过程在Matlab的图形仿真环境Simulink中进行,用图形方式调用DSP Builder和其他Simulink库中,图形模块,构成系统级设计模块,如图7所示。

模块化设计的主要优点在于只要改变模块中的状态字就可以轻松地控制正弦波的频率和相位,不用到程序里修改了,也不需要理解复杂难于掌握的硬件描述语言,真正做到模块化并充分节省设计时间和设计周期。

电路模型设计完成后,可以利用Simulink环境的强大的图形化仿真验证功能,直接进行算法级模型仿真验证,结果如图8所示。由于在Matlab的Simulink中,模型仿真属于系统验证性质的仿真,并不是RTL级仿真,与目标器件和硬件系统没有关系。因此采用Modelsim对设计电路进行功能仿真。Modelsim是Mentor公司杰出的HDL仿真工具,以其强大的数字和模拟仿真功能而广泛应用,且仿真结果直观、易懂,如图9所示。



由图8和图9输出波形结果可以看出,采用SOPC方案设计的正弦信号发生器产生的正弦波波形清晰、稳定、相位变化比较连续,且输出相位噪声低。

2.3 系统硬件验证

通过SignaICompiler把设计模型文件转成相应的硬件描述语言VHDL设计文件。在QuartusⅡ集成环境中,对.vhd文件进行编译、时序仿真,对设计文件进行仿真验证,确定DE2开发板中PIO所对应的输入/输出即引脚锁定;对器件编程并最终下载到目标芯片DE2EP2C35F672C6上,以实现硬件测试;调用Signal-TapⅡ观察硬件测试结果,经D/A转换由示波器观察波形输出,其结果与系统仿真结果相同,从而验证了系统设计的合理性。

3 结 语

从工程应用的角度,提出了基于DSP及SOPC的结构化、模块化设计方法,该方法可以推广到其他电子设计领域,使系统电路设计更加简便直观,且便于扩展,具有较高的实用性和可靠性。通过对比DSP和SOPC设计的优缺点表明,与DSP设计相比,SOPC技术可以大大缩短系统的设计周期,节省设计费用,提高产品的性价比和竞争力,因此更具有良好的推广和应用前景。(编辑:chiying)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top