MIMO-OFDMA无线基站的DSP-FPGA系统划分
符号级处理
OFDMA系统中的符号级功能包括副通道和去副通道、FFT/IFFT、信道估算/均衡、测距/随机访问通道(RACH)探测等功能。其他功能包括DFT/IDFT(LTE确定的),以及通道卡可能采用的CFR等。通道估值和均衡可以离线执行,涉及到更适合在数字信号处理器中实现的控制算法。相反,FFT和IFFT函数是普通的数据通路函数,需要以非常快的速度进行复数乘法,更适合在FPGA上实现。RACH探测和CFR等功能也需要高性能的低延时FFT/IFFT运算。
图2所示为高端FPGA(Altera Stratix III器件)中含有的嵌入式DSP模块。DSP模块一般包括8个专用乘法器;而Stratix III EP3SE110等高级FPGA的112个DSP模块能够提供896个18x18乘法器,吞吐量高达500 GMAC。这要比目前市场上的商用数字信号处理器高出一个数量级。

在基站中采用高级多路天线技术时,例如空时编码(STC)、聚束和MIMO方案等,FPGA和数字信号处理器的这种信号处理能力差异便显得更加突出。在目前以及今后的WiMAX和LTE无线系统中,普遍认为OFDM-MIMO相结合是实现更高数据速率的关键。
图1所示的是基站中采用的多路发送和接收天线。在这种配置中,进行MIMO解码前,对每一天线流单独进行符号处理,产生单路比特级数据流。当在数字信号处理器上实现的天线以串行方式执行操作时,符号级处理的复杂度会随之线性增加。例如,使用两路发送和接收天线时,假设FFT和IFFT变换长度为2048点,其运算将占用1GHz数字信号处理器60%的处理能力。相比之下,采用FPGA时,可以有效地扩展实现多路天线。FPGA对多路天线数据进行时分复用和并行处理。同一2x2天线FFT/IFFT配置可以利用不到5%的Stratix III EP3SE110 FPGA资源来实现。
多路天线方案的优势更明显,包括更高的数据速率、阵列增益、分集增益和邻近信道干扰抑制能力等。聚束和空分复用MIMO技术对计算量的要求较大,涉及到矩阵分解和相乘等运算。特别是在这些系统中解线性方程组时,需要采用Cholesky分解、QR分解和奇异值分解函数。这些函数会很快耗尽DSP资源,但在采用了脉动阵列结构的FPGA中实现却非常适合,这种结构通过并行FPGA来提供最具成本效益的解决方案。
数字IF处理和RRH
图3显示了基带通道卡向RF卡发送数据,进行后续的数字中频(IF)处理,包括数字上变频(DUC)、CFR和DPD。数字IF将数字信号处理的范围从基带扩展到了天线--RF域,在降低生产成本的同时提高了系统灵活性。而且,数字变频要比传统的模拟技术更灵活,性能更好(在衰减和选择性方面)。需要采用CFR和DPD功能来提高基站功率放大器的效率,从而大大节省了OPEX。CFR和DPD都需要进行采样率高达100+Msps的复数乘法运算。与DUC相似,在接收侧需要采用数字下变频(DDC)将IF频率变回到基带。

引入MIMO和多载波体系结构需要采用时分复用和多通道技术。利用Altera的IP内核,以及创新的DSP Builder工具,在Altera FPGA中可以很容易实现这些任务。DUC和DDC都使用复数滤波器体系结构,包括有限冲击响应(FIR)和级联积分梳状(CIC)滤波器。高级FPGA能够提供数百个18x18乘法器,运行速率高达350MHz。这不但为多信道并行处理提供了平台,而且还是最具成本效益的集成单芯片解决方案。另一发展趋势是分布式BTS,射频单元相对于BTS的其他部分位于远端,而不是在一个地方。这些射频单元也称为远端射频前端(RRH),通过光链路和主要的BTS单元进行通信。CPRI和OBSAI是实现RRH的两个标准。CPRI和OBSAI接口一般在FPGA上实现,利用BTS体系结构的多通道特性可以实现成本效益非常好的解决方案。
结论
随着标准的稳定,应该逐渐降低最初对基站灵活性的要求,在这一阶段,高性能和长期降低成本的途径是获得市场成功的关键因素。一般采用ASIC来降低成本。FPGA可以无风险移植到低成本结构化ASIC,通过这一途径能够大大降低产品生命周期的后期成本。例如,Altera HardCopy II技术提供了无缝、无风险移植途径,从Stratix II FPGA转换到成本很低的ASIC,同时也提高了系统性能。HardCopy能够把成本和功耗降低近70%,进一步减小了封装尺寸,同时降低了CAPEX和OPEX的构成成本。
在目前的无线基站设计中采用数字信号处理器和PLD一直是有效的设计方法。从系统吞吐量需求以及对成本的长期考虑出发,产品要获得成功的关键是基站体系结构的智能划分。这样可以确保最终的产品能够更新,性价比高,而且非常灵活,随着多种标准的发展而重新进行配置。
3G FPGA DSP MIMO LTE WiMAX 相关文章:
- 基于DSP的3G LTE应用实现(08-02)
- 3G系统中Turbo译码改进及DSP实现(01-26)
- 基于嵌入式Linux的3G无线视频终端的设计与实现(07-10)
- 3G LTE的DSP应用实现(01-21)
- 基于Android的车载监控管理系统设计(02-09)
- 基于DSP的3G LTE系统设计(02-09)
