WiMax终端收发系统结构分析
衡,而带外噪声的滤出则需要高阶滤波器。
相比于零中频结构,数字处理可以避免I Q 的失配问题。而且数字中频结构还具有多种优点。在基带-中频中的IQ均衡问题、直流偏移问题容易解决;较低的带外整形泄露要求和可调的振幅;而且信号在基带-中频段之后对带通滤波器的要求较低,很容易到达指标;混频器的负载能力和振幅要求对衰减器要求也不高。但是,数字中频接收机对模数转换器(ADC)有较高要求,如需要ADC有足够高的动态范围,较低的量化噪声和热噪声,好的线性度,足够大的动态范围。在一些低速率应用中,如IEEE802.15.4中,带通Σ-Δ ADC( Band pass Σ-Δ ADC)性能较为适宜,但带通Σ-Δ ADC却有有较大的设计难度。同时还意味着对基带部分的DSP性能要求更高,例如进行窗式滤波等。而且DAC要求也相应提高,通常需要10~12比特的分辨率和较高的速率。对镜像抑制滤波器的性能也变得苛刻,甚至在某些频率区域需要对RF滤波器补偿。所以在WiMax应用中,数字中频结构很有潜力,但是需要对设计能力进行权衡。
三种接收结构相应的WiMax终端收发系统及其数字基带处理部分的模块数简单对比如下表所示,这里忽略了一些次要模块和一些非收发通路的一些模块。
这里,空白栏并不完全表示不需要该模块,而是根据具体设计指标确定。另外,在对于QAM64和QAM16调制中由相位失衡造成的误差矢量幅度性能差异比较,数字中频结构较其余两种有微弱优势;在QPSK调制方式下,数字中频结构仅在增益失衡较大时略有劣势。总体而言,在WiMax的这三种调制方式下,三种接收结构中由相位失衡造成的误差矢量幅度性能差异极小。
给出了几种WiMax芯片的性能参数,可以看出在这些芯片中,零中频结构较为普遍。
这里,空白栏并不完全表示不需要该模块,而是根据具体设计指标确定。另外,在对于QAM64和QAM16调制中由相位失衡造成的误差矢量幅度性能差异比较,数字中频结构较其余两种有微弱优势;在QPSK调制方式下,数字中频结构仅在增益失衡较大时略有劣势。总体而言,在WiMax的这三种调制方式下,三种接收结构中由相位失衡造成的误差矢量幅度性能差异极小[1]。
表2给出了几种WiMax芯片的性能参数,可以看出在这些芯片中,零中频结构较为普遍。