微波EDA网,见证研发工程师的成长!
首页 > 天线设计 > 天线设计文库 > 小型双频段射频能量接收天线设计

小型双频段射频能量接收天线设计

时间:11-26 来源:互联网 点击:

保持不变。各参数的初始值如表1 所示。

\

图2 缝隙天线的设计参数示意

图3 给出了小缝隙长度L1对天线回波损耗的影响,L1尺寸选取从22.9 mm处以1 mm增加,其他主要参数保持不变,仿真结果可以发现在低频段处L1越大,谐振点右移,当L1 = 23.9 mm时,回波损耗最小;在高频段处随着L1增大,谐振频率点左移,回波损耗减小但带宽也随之减小。

图4 给出了大缝隙长度L2对天线回波损耗的影响,L2从41.6 mm处以每1 mm增加,其他各参数保持不变。从图中可以看出在低频段处L2越小,回波损耗越大,带宽也相应的增加。谐振点基本维持不变;在高频段处L2越大,谐振点向左移动,回波损耗越小,天线阻抗越来越不匹配。

图5 给出了小缝隙宽度W3对天线回波损耗的影响,W3的大小从10.6 mm处以每1 mm增加,其他各参数保持不变。仿真结果显示W3对低频段的影响几乎很小;在高频段处当W3增大时,谐振频率左移,回波损耗和带宽维持不变。

图6 为大缝隙宽度W4对天线回波损耗的影响,W4尺寸从14.1 mm处以每1 mm增加,其他各参数均保持不变。从图中可以看出低频段处W4越大,谐振频率略向右移,回波损耗越来越大,天线的匹配越好,带宽也相应的增大。在高频段处规律同低频段一样。通过仿真结果发现,调节缝隙的尺寸可以改变两个谐振频率的距离。再根据对频段的设计要求最后选定的缝隙尺寸的大小分别为L1 = 23.9 mm,L2 = 41.6 mm,W3 =12. 6 mm,W4 = 18.1 mm。最终得到了最佳的天线尺寸参数,如表2 所示。

\ \

  图3 谐振频率随L1变化

\

  图4 谐振频率随L2变化

\

  图5 谐振频率随W3变化

\

  图6 谐振频率随W4变化

天线在谐振频率1.9 GHz 和2.4 GHz 两处的增益方向图如图7 和图8 所示。从图中可以看出该缝隙天线的辐射是双向性的,缝隙上、下方的辐射场最强,辐射强度基本相同。天线的谐振频率为1.9 GHz时,在XOZ 面上的最大增益为1.4 dBi;天线谐振频为2.4 GHz 时,在XOZ 面上最大增益为2.9 dBi。天线的方向图具有一定的方向性,但是天线的增益并不高,因此这种天线可以作为全向天线来使用,适用于接收周围的射频无线能量。

\

  图7 XOZ 面上的天线的增益( f = 1.9 GHz)

\

  图8 XOZ 面上的天线的增益( f = 2.4 GHz)

3、测试结果

根据上一节的参数分析和优化结果,使用FR4双面PCB 板加工制作了该天线,并通过Agilent 矢量网络分析仪对天线进行了测试,天线的实物图如图9所示。

\

  图9 天线实物的正面图和反面

图10 给出了天线的输入回波损耗仿真和实测曲线,从仿真图中可以看出,天线的中心谐振点分别为f1 = 1.9 GHz,f2 = 2.4 GHz.当回波损耗S11 <- 10 dB时,天线在低频段的工作频率范围为1.82~ 1.96 GHz,带宽达到了140 MHz,天线在高频段的频率范围为2.34 ~ 2.45 GHz,带宽接近110 MHz。天线在谐振点处的回波损耗分别是- 40 dB 和- 20 dB,表明该天线匹配较好。实测得到的结果与仿真结果基本相同,低频段处谐振频段向右偏移约为1.92 GHz,高频段处谐振点略向左偏移,两谐振点处的回波损耗均有所减小。造成误差的原因包括加工天线过程中尺寸的微小误差,SMA 接头处焊接不良、接口处有能量损耗,环境干扰等因素。

\

  图10 回波损耗测试结果

4、结语

文中提出了一种缝隙加载结合双线馈电的多频段天线方法,设计了一种适用于环境无线能量接收的新型小尺寸双频微带缝隙天线。通过Agilent 公司的ADS 对其仿真并进行了优化分析,实现了天线分别在1.9 GHz和2.4 GHz双频工作。在低频端带宽为140 MHz,相对带宽约为7.4%,在高频端带宽110 MHz,相对带宽约为4.6%。该射频能量接收天线能够适应GSM 和ISM 两个频段,尺寸小,制作成本低,具有较强的实用性和良好的应用前景。

栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top