微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > CRC算法及工作原理

CRC算法及工作原理

时间:08-23 来源:互联网 点击:

  CRC检验

CRC校验实用程序库 在数据存储和数据通讯领域,为了保证数据的正确,就不得不采用检错的手段。在诸多检错手段中,CRC是最著名的一种。CRC的全称是循环冗余校验,其特点是:检错能力极强,开销小,易于用编码器及检测电路实现。从其检错能力来看,它所不能发现的错误的几率仅为0.0047%以下。从性能上和开销上考虑,均远远优于奇偶校验及算术和校验等方式。因而,在数据存储和数据通讯领域,CRC无处不在:著名的通讯协议X.25的FCS(帧检错序列)采用的是CRC-CCITT,WinRAR

、NERO、ARJ、LHA等压缩工具软件采用的是CRC32,磁盘驱动器的读写采用了CRC16,通用的图像存储格式GIF、TIFF等也都用CRC作为检错手段。

CRC的本质是模-2除法的余数,采用的除数不同,CRC的类型也就不一样。通常,CRC的除数用生成多项式来表示。最常用的CRC码的生成多项式如表1所示。

@@10A08800.GIF;表1.最常用的CRC码及生成多项式@@

由于CRC在通讯和数据处理软件中经常采用,笔者在实际工作中对其算法进行了研究和比较,总结并编写了一个具有最高效率的CRC通用程序库。该程序采用查表法计算CRC,在速度上优于一般的直接模仿硬件的算法,可以应用于通讯和数据压缩程序。

  算法

通常的CRC算法在计算一个数据段的CRC值时,其CRC值是由求解每个数值的CRC值的和对CRC寄存器的值反复更新而得到的。这样,求解CRC的速度较慢。通过对CRC算法的研究,我们发现:一个8位数据加到16位累加器中去,只有累加器的高8位或低8位与数据相作用,其结果仅有256种可能的组合值。因而,我们可以用查表法来代替反复的运算,这也同样适用于CRC32的计算。本文所提供的程序库中,函数crchware是一般的16位CRC的算法;mk-crctbl用以在内存中建立一个CRC数值表;crcupdate用以查表并更新CRC累加器的值;crcrevhware和crcrevupdate是反序算法的两个函数;BuildCRCTable、CalculateBlockCRC32和UpdateCharac

terCRC32用于CRC32的计算。

/* CRC.C——CRC程序库 */

#define CRCCCITT 0x1021

#define CCITT-REV 0x8408

#define CRC16 0x8005

#define CRC16-REV 0xA001

#define CRC32-POLYNOMIAL 0xEDB88320L

/* 以上为CRC除数的定义 */

#define NIL 0

#define crcupdate(d,a,t)*(a)=(*(a)8)^(t)[(*(a)>>8)^(d)];

#define crcupdate16(d,a,t)*(a)=(*(a)>>8^(t)[(*(a)^(d))0x00ff])

/* 以上两个宏可以代替函数crcupdate和crcrevupdate */

#include #include #include /* 函数crchware是传统的CRC算法,其返回值即CRC值 */ unsigned short crchware(data,genpoly,accum)

unsigned short data;/* 输入的数据 */

unsigned short genpoly;/* CRC除数 */

unsigned short accum;/* CRC累加器值 */

{

static int i;

data=8;

for(i=8;i>0;i--)

{

if((data^accum)0x8000)

accum=(accum1)^genpoly;

else

accum=1;

data=1;

}

return (accum);

}

/* 函数mk-crctbl利用函数crchware建立内存中的CRC数值表 */

unsigned short *mk-crctbl(poly,crcfn);

unsigned short poly;/* CRC除数--CRC生成多项式 */

R>unsigned short (*crcfn)();/* 指向CRC函数(例如crchware)的指针 */

{

/* unsigned short */malloc(); */

unsigned short *crctp;

int i;

if((crctp=(unsigned short*)malloc(256*sizeof(unsigned)))==0)

return 0;

for(i=0;i256;i++)

crctp=(*crcfn)(i,poly,0);

return crctp;

}

/* 函数mk-crctbl的使用范例 */

if((crctblp=mk-crctbl(CRCCCITT,crchware))==NIL)

{

puts(insuff memory for CRC lookup table.n);

return 1; */

/* 函数crcupdate用以用查表法计算CRC值并更新CRC累加器值 */

void crcupdate(data,accum,crctab)

unsigned short data;/* 输入的数据 */

unsigned short *accum;/* 指向CRC累加器的指针 */

unsigned short *crctab;/* 指向内存中CRC表的指针 */

{

static short comb-val;

comb-val=(*accum>>8)^data;

*accum=(*accum8)^crctab[comb-val];

}

/* 函数crcrevhware是传统的CRC算法的反序算法,其返回值即CRC值 */

unsigned short crcrevhware(data,genpoly,accum)

unsigned short data;

unsigned short genpoly;

unsigned short accum;

{

static int i;

data=1;

for(i=8;i>0;i--)

{

data>>=1;

if((data^accum)0x0001)

accum=(accum>>1)^genpoly;

else

accum>>=1;

}

return accum;

}

/* 函数crcrevupdate用以用反序查表法计算CRC值并更新CRC累加器值 */

void crcrevupdate(data,accum,crcrevtab)

unsigned short data;

unsigned short *accum;

  CRC检验方法的工作原理

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top