微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于Windows Mobile嵌入式系统的类圆管材识别与计数系统研究

基于Windows Mobile嵌入式系统的类圆管材识别与计数系统研究

时间:10-09 来源:互联网 点击:

0 引言

近年来,随着基于嵌入式微处理器和嵌入式操作系统的智能手机技术的飞速发展,基于Windows Mobile系统的嵌入式智能手机图像采集处理技术也正处于方兴未艾的阶段,这就使得以嵌入式技术为核心的图像处理系统能够广泛应用于工业自动化生产、监护、防盗系统,机器人视觉等系统中。

本文通过智能手机来采集钢管横截面图像,并运用图像识别技术对管材进行自动化计数,同时采用计算机图像处理方法给出了一种对管材进行计数的嵌入式系统软件的实现方法,其中包括图像的采集、预处理、图像分割、形态学处理、椭圆识别与计数等。该系统可提高钢铁行业以及其他相关行业的管材计数效率,大大减轻工人的劳动强度,具有良好的市场前景和经济效益。

1 Windows Mobile平台

本系统是在Windows Mobile平台下开发的,Windows Mobile是由微软公司提供的先进型移动设备操作系统,同时也是最优秀的行业应用平台之一。基于Windows Mobile的Pocket PC PhoneEdition和Smartphone不仅可为消费者提供熟悉且可自定义的用户体验,同时也为企业用户提供了一个可扩展的平台,使他们可以开发和投入使用创新的移动解决方案,从而增加新的销售收入并带动业务增长。

2 工作原理与系统结构框架

2.1 管材图像检测计数的工作原理

管材图像检测计数系统的基本工作原理是:首先用智能手机的摄像头采集管材的横截面图像.然后依靠智能手机强大的嵌入式处理器来对源数字图像进行格式转换和颜色信息处理,并获取管材横截面的灰度图像:然后再利用图像增强技术对图像的杂质进行去噪,并选用合适的阈值进行图像二值化分割,将管材横截面特征从背景图像中分离;之后,再采用哈夫变换法(HoughTransform)对二值图像进行椭圆检测,最后用区域标记法对图中连通区域进行标记,以统计出管材的数目。

2.2 系统结构框架

图1给出了本系统的结构框架。系统工作时,首先由智能手机的摄像头采集到格式为JPG的源数字图像,然后对其进行图像格式转换,之后再进行图像的颜色处理、图像的增强、图像的分割、图像的边缘检测、数量的统计以及信息的显示等工作。

3 系统关键技术与相关算法

3.1 图像格式的转换

由于一般采集到的图像输出都是JPG格式,这种格式的图像数据是压缩的,占用的空间比较小,便于存储和传输,但是不便处理。因而需要将JPG格式的图像转换为BMP格式的图像,此时,图像上的每一个像素点和图像数据一一对应,以便于对图像进行处理。

3.2 图像颜色的处理

采集后的源图像被转换成BMP格式后,通常是24位真彩色图像,图2所示是其256阶灰度图。彩色图像的每一个像素点的值有R、G、B三个分量,每个分量占8位和256阶色。因此,彩色图像所含的信息量过大,所以,一般采用灰度图来进行图像处理。

灰度图是只含亮度信息而不含色彩信息的图像,它把亮度值量化为0到255共256级,其中0最暗(全黑),255最亮(全白)。R、G、B分量的值是相等的,且称之为灰度值,即:

经实验与理论推导证明,当ωR=0.30,ωG=0.59,ωB=0.11时,能获取到最合理最适合图像处理的灰度图像。

3.3 图像的增强

在管材横截面图像处理的过程中,实际获得的图像一般都因灰尘、光照等某种干扰而含有噪声,因而会影响图像质量。为了改善图像质量,降低或消除噪音影响,还需要对图像进行增强处理。为了保护图像中目标区域的边缘特征,并且能够平滑噪声,本系统主要采用图像增强中的图像平滑方法,也就是中值滤波法,并通过修改像素灰度值的方法来减少和消除图像中的高频噪音,改善图像对比度,提高管材识别与计数的准确率。

中值滤波法属于空域处理中的非线性图像平滑方法,它一般是在二维坐标(x,y)内创建一个大小为(2m+1)×(2m+1)滑动窗口,并对窗口内的各像素灰度值进行排序,再用排序后的中值来替代滑动窗口的原中心像素。其排序后的中值为(i,j):

图3为中值滤波平滑后的图像。相对来说,中值滤波法可以克服线性滤波所带来的图像细节模糊等现象,能够比较好的保护源图像边缘,而且对滤除脉冲干扰及颗粒噪声最为有效。

3.4 图像的分割

图像分割是依据图像的灰度、颜色或几何性质将图像中具有特殊含义的不同区域分开。为了将管材的横截面特征从背景中提取分离出来,我们选用二值化方法来使图像只具有两个灰度级,即0和255,也就是黑和白。为了将目标从图像中分割出来,可将其灰度值设为255,将背景的灰度值设为0。

实现图像二值化有直方图统计法、阈值分割法等。考虑到系统的性能需求,这里采用阈值分割法进行图像的二值化。设输入图像为F(i,j),输出

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top