微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于模糊逻辑的指纹图像对比度增强算法

基于模糊逻辑的指纹图像对比度增强算法

时间:10-23 来源:互联网 点击:

糊算子通过降低区域中的值和增加区域中的值,起到了增强2 个区域之间对比度的作用。

  步骤4 :通过式(7) 的反函数,将映射为二维空间域的灰度图像。其得到经过模糊增强处理后的图像,中的像素灰度值为:


  3  实验结果与分析

  采用Matlab 软件编程且分别应用以上2 种算法对FVC 指纹数据库中一些指纹图进行增强处理,增强结果如图1 ,图2 所示。



  从实验结果可以看出,两种模糊增强算法在一定条件下都可有效增强指纹图像的对比度。相比之下,基于GFO 算子(广义模糊算子) 的图像增强算法去除背景能力更强,因此对于具有单峰及双峰分布直方图的指纹图像,该算法可能将一些灰度值较低的前景点误分为背景点;而模糊特征平面增强算法因为去除背景能力较弱,对于具有多峰分布直方图的指纹图像增强效果较差。

  因此对于需要着重增强前景的指纹图像,更适合用基于模糊特征平面的增强算法,而对于需要重点去除背景的指纹图像则需选取基于GFO 算子(广义模糊算子) 的图像增强算法。

  4  结 语

  从模糊集的角度出发,模糊特征平面增强算法将图像转化为等效的图像模糊特征平面,在此基础上进行模糊增强,最后再转换为空域图像。基于GFO 算子(广义模糊算子) 的图像增强算法与模糊特征平面增强算法,处理过程相似,不同之处在于所定义的隶属度函数及非线性变换形式不同。采用这两种方法均可以在一定程度上提高低灰度区域与高灰度区域之间的对比度,从而提高图像的质量。两种算法相比而言,基于模糊特征平面的增强算法更适合用于需要着重增强前景的指纹图像,而基于GFO 算子(广义模糊算子) 的图像增强算法则更适合用于需要重点去除背景的指纹图像。需要指出的是以上两种算法仅仅增强了指纹图像的对比度,要取得更好的增强效果还需要结合指纹图像的方向信息进行滤波增强,以达到对粘连脊线分离及断开脊线连接的效果。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top