嵌入式系统的Boot Loader分析
用内核。 2 Boot Loader的设计 2.1 中断向量表(二级)的设计与建立 如果有中断或者异常发生时,处理器便会强制性地把PC指针指向向量表中它所对应的中断类型地址值。为了提高中断响应速度,FLASH的0x0地址存放能跳转到0x33FFFF00地址处中断向量的跳转指令,也就是会在在RAM中建立一个二级中断向量表,起始地址为0x33FFFF00。除了复位外,所有的异常入口地址都由FLASH跳转得到,代码如下: 2.2 第二阶段拷贝到RAM 把第二阶段Stage2拷贝到RAM地址的最顶大小为1 MB的开始空间,RAM的起始地址为0x30000000。代码如下所示: 2.3 堆栈指针的设置 用户使用哪些中断决定了系统堆栈的初始化,以及系统需要处理的哪些错误类型。一般情况下,堆栈设置是必须,而且是由管理者自己设置的。如果需要使用IRQ中断,那么IRQ堆栈的设置也是必须的,下面是IRQ堆栈的设置: 3.1 可执行映像Stage2的入口 由于Glibc库支持的函数不能用于编译和链接Boot Loader这样用C语言编写的程序,因此把main()函数的起始地址作为第二阶段的入口点是最直接的想法。可以用汇编编写一段Trampoline小程序,用CPU跳转指令跳到main()函数去执行,当函数返回时会再次回到Trampoline程序,代码如下: 程序顺利时就不会再回到开始的Trampoline程序,不然就会回到最后的语句,系统就会重新启动。 3.2 内存影射 一般S3C2410上配置的SDRSAM大小为64 MB,该SDRAM的物理地址范围是Ox30000000~Ox33FFFFFF(属于Bank 6)。由Section的大小可知,该物理空间可被分成64个物理段。因为ARM体系结构中数据缓冲必须通过MMU开启,因此Boot Loader效率不是很高,但是MMU可以通过平板映射(虚拟地址和物理地址相同)方式被开启,这样使用内存空间Dcache,从而使Boot Loader的运行速度得到有效的提高。映射关系代码如下: 3.3 装载内核映像和根文件系统映像 像ARM这样的嵌入式CPU通常都是在统一的内存地址空间中寻址FLASH等固态存储设备的,因此从Flash上读取数据与从RAM单元中读取数据一样,用一个简单的循环就可以完成从FLASH设备上拷贝映像的工作:其中count为根文件系统映像的大小或内核映像的大小。 3.4 内核的启动参数的设置 内核启动可以从NAND FLASH(NOR FLASH)中启动运行Linux,需要修改启动命令如下: LCD启动参数一般都包括root,init和console。noinitrd不使用ramdisk。root根文件系统在MTD分区。Init内核运行入口命令文件。co-nsol内核信息控制台,ttys0表示串行口0;tty0表示虚拟终端。 4 结语 通过对Boot Loader的分析可以看出,设计一个性能优良的Boot Loader可以提高系统的稳定性及实时性,它是嵌入式开发中不可或缺的一部分。只有设计出一个稳定的Boot Loader,才能进行下一步的系统开发工作,直至完成整个嵌入式系统的开发。设计Boot Loader是一项很复杂的工作,需要对硬件资源和所用的操作系统有很深的理解。
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)