微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 相位式光纤测量电路系统的设计与实现[图]

相位式光纤测量电路系统的设计与实现[图]

时间:04-04 来源:互联网 点击:

混频电路的实现基于混频器AD831。使用两片AD831,分别用于参考信号与本振信号混频及测量信号与本振信号混频。混频后使用芯片MAX274进行带通滤波,得到混频后的低频正弦信号。然后通过基于MAX912的过零比较电路将正弦信号转换为同相位差的方波信号,输入到FPGA中进行鉴相。在FPGA中,利用多周期自动数字鉴相法,对相位差进行检测。其实现框图如图8所示。



3 测量结果
在实际测量中,利用组合测尺频率先后进行两次测量。第一次取主振信号频率为52MHz,本振信号频率为51.99MHz;第二次取主振信号频率为51MHz,本振信号频率为50.99MHz。对应于混频后信号频率为10kHz。FPGA中鉴相高速计数脉冲频率为50MHz。基于以上参数,对多段光纤进行测量。两次测量的结果进行分析比较,可得到测量值。被测光纤的实际光程已由精密反射仪通过光学方法进行标定。测量结果如表1所示。


由以上测量结果可以看到,在一定的量程范围内,基于相位法的测量系统,对光纤光程的测量误差绝对值小于2mm。

4 结论
本文在FPGA、直接数字频率合成(DDS)、自动数字鉴相等技术的基础上,设计并实现了基于相位法的电路测量系统。实际测量结果表明,此测量系统在一定的量程范围内,对光纤光程的测量误差绝对值小于2mm。在此测量水平下,此测量系统可用于基于光纤的激光测距校正与检定中,对其中的光纤基线进行测量和标定,这为光电测距仪和全站仪的室内检定提供了一个可行的方案和参考。
本文所论述的相位法测量的电路实现是一个初步方案,在电路设计、系统优化和误差分析等方面还需要做进一步的改进,以提高系统性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top