微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 电力有源滤波器技术发展状况及问题探讨

电力有源滤波器技术发展状况及问题探讨

时间:04-04 来源:互联网 点击:

无源纹波滤波器应仔细设计;最后,为保证逆变器直流侧电压的稳定,应适当选择直流侧电容值。

(2)经济的考虑

APF的技术构想早在70年代就已提出,但直到90年代APF技术才进入实际应用,其中一个重要原因就在于APF的实际成本价格太高。因此在选择应用APF时必须考虑其成本价格。就当前技术水平而言,采用小额定值APF结合无源滤波器的混合型电力有源滤波器是一种切实可行的方案。当然随着开关器件和DSP芯片价格的下降,串_并联电力有源滤波器也是很有发展前途的。

电力有源滤波器的研究与应用,国内远落后于国外,除少数几台APF已投入工业试运行外,其它大部分尚处于研制阶段。但随着我国对电网谐波污染治理日益重视,“绿色电力电子”的呼声愈来愈高,电力有源滤波器必然会得到广泛地推广应用。

②只能补偿固定的无功功率,对变化的无功负载不能进行精确补偿;

③其滤波特性受系统参数影响较大,并且其滤波特性有时很难与调压要求相协调;

④重量与体积较大等等。

②只能补偿固定的无功功率,对变化的无功负载不能进行精确补偿;

③其滤波特性受系统参数影响较大,并且其滤波特性有时很难与调压要求相协调;

④重量与体积较大等等。

针对无源滤波技术的上述缺点,1976年,L·Gyugi提出用PWM逆变器构成“电力有源滤波器”(activepowerfilter,简称APF)。80年代以后,由于电力电子器件及其控制技术的发展,APF技术的发展逐步走向成熟,在国外已得到广泛应用。与无源滤波器相比,APF具有高度可控制和快速响应特性,并且能跟踪补偿各次谐波、自动产生所需变化的无功功率,其特性不受系统影响,无谐波放大危险,相对体积重量较小等突出优点,因而已成为电力谐波抑制和无功补偿的重要手段。APF的推广应用也必将给我国电力工业带来巨大的经济效益和社会效益。

本文首先简要介绍电力有源滤波技术的基本原理和分类:然后着重介绍APF中已提出的几种主要控制策略;最后,对APF技术的国内外发展状况及应用时应考虑的一些问题作简单介绍,以便引起大家对APF推广应用的兴趣。

2电力有源滤波器的基本原理

电力有源滤波器系统主要由两大部分组成,即指令电流运算电路和补偿电流发生电路(由电流跟踪控制电路、驱动电路和主电路三部分构成)。

指令电流运算电路的功能主要是从负载电流iL中分离出谐波电流分量iLh和基波无功电流iLg,然后将其反极性作用后发生补偿电流的指令信号ic=(iLh+iLq)。电流跟踪控制电路的功能是根据主电路产生的补偿电流ico应跟踪ic的原则,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路,产生补偿电流ico,由于ic≈ico,所以

iS=iL+ic=iL+ico

=iL-(iLh+iLq)=iLp即电源电流iS中只含有基波的有功分量iLp,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。

电力有源滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型APF(储能元件为电容)和电流型APF(储能元件为电感)。电压型APF在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型APF在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型APF的优点是损耗较少,效率高,是目前国内外绝大多数APF采用的主电路结构。电流型APF由于电流侧电感上始终有电流流过,该电流在电感内阻上将产生较大损耗,所以目前较少采用。但是电流型APF由于开关器件不会发生直通短路现象,随着超导储能磁体研究的进展,也将促进多功能电流型APF投入实用。

从上述原理可以看出,电力有源滤波器是运用瞬时滤波形成技术,对包含谐波和无功分量的非正弦波进行“矫正”,这与基于稳态频谱的“滤波”概念已有很大的不同,而类似于自适应滤波技术中的“干扰抵消器”。因此,电力有源滤波器有很快的响应速度,对变化的谐波和无功功率都能实施动态补偿,并且其补偿特性受电网阻抗参数影响较小。

3电力有源滤波器的分类

(1)按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。

(2)按电源类型分类,APF可分为单相APF、三相三线制APF、三相四线制APF及有源线路调节器(APLC)等。

三相四线制APF主要是为了补偿电源中线上的电流谐波、无功功率及三相之间的不平衡问题。当功率额定值较小时,其主电路可直接采用三相逆变器,而将直流侧电容中点联接到电源中点上。当负载功率较大时可用四桥臂的逆变器,将第四桥臂单独用于补

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top