微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 半导体制冷在投影仪散热中应用的前景

半导体制冷在投影仪散热中应用的前景

时间:07-18 来源:互联网 点击:

温度对发光二极管的电学和光谱参数均有较大影响。一些采用发光二极管作为光源的投影仪,为了保证仪器性能并且能正常工作,需要对其光源受温度影响的特性作深入的研究,进而掌握仪器的最佳工作环境温度。

半导体制冷,又称电子制冷、温差电制冷、热电制冷或珀尔帖制冷等,半导体制冷器的尺寸小,可以制成体积不到1cm小的制冷器;重量轻,微型制冷器往往能够小到只有几克或几十克。无机械传动部分,工作中无噪音,无液、气工作介质,因而不污染环境,制冷参数不受空间方向以及重力影响,在大的机械过载条件下,能够正常地工作;通过调节工作电流的大小,可方便调节制冷速率;通过切换电流方向,可使制冷器从制冷状态转变为制热工作状态;作用速度快,使用寿命长,且易于控制。

1 半导体制冷基本原理

所谓的热电效应,是当受热物体中的电子(洞),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。而这个效应的大小,则是用称为thermopower(Q)的参数来测量,其定义为Q=E/-dT(E为因电荷堆积产生的电场,dT则是温度梯度)。

半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关。

热电效应是半导体制冷的最基本依据,其中最着名的是塞贝尔效应和珀尔帖效应。1821年,塞贝尔发现在用两种不同导体组成闭合回路中,当2个连接点温度不同时(T1T2),导体回路就会产生电动势(电流),如图1所示。1834年,法国科学家珀尔帖在此基础上做了一个相反的实验:用两种不同导体组成闭合回路并通直流电,连接处出现了一端冷、一端热的现象,即珀尔帖效应,如图2所示。

2 半导体制冷的材料特性

普通金属导体的珀尔帖效应微弱,例如当时曾用金属材料中导热和导电性能最好的锑-铋(Sb-Bi)热电偶做成制冷器,但其制冷效率还不到1%,根本没有实用价值,因此珀尔帖效应长时间不受重视。

由3块金属板和1对电偶臂组成的热电偶,在通上如图3所示的电流时,金属板1会从周围吸收热量,而金属板2、3则释放热量。金属板1作为工作端可达到制冷的目的,而将电源极性反过来(即通以反方向电流),金属板2、3吸收热量,金属板1释放热量。在这种情况下,若金属板1作为工作端,则如图3所示的就是制热器了。实验表明,与普通金属相比,半导体电路的珀尔帖效应明显增强。图3中这对电偶制冷量很小,通常只有几百毫瓦到2~3 W之间,为了得到更好的制冷效果,通常串联、并联、混联上述电偶组成制冷电堆,获得数瓦到数千瓦的制冷量。

通常半导体制冷器由许多N型和P型半导体组成,N、P结之间以一般导体连接成完整线路,通常采用铝、铜或其他金属导体,最后像夹心饼干一样,外夹2片陶瓷片。陶瓷片必须绝缘,而且导热性能要良好,如图4所示。

并非所有半导体材料[5]都能制作半导体制冷器,这里所说的半导体材料不是人们熟悉和常见的制造二极管、三极管等电子器件的硅(Si)或锗(Ge),而是相对复杂的化合物半导体,如P型的Bi2Te3-Sb2Te3、AgTiTe、AgCuTiTe及N型的Bi-Sb合金等。衡量半导体材料热电性能的系数用Z表示,称为优值系数。它是一个与材料的温差电动势率、电导率、电阻率、热导率(包括晶格热导率、电子热导率)相关的综合参数,其量纲为K-1。上述几种材料的Z值在3×10-3K-1左右。Z值越大,说明材料的热电性能越好,制作的制冷器在相同条件下的制冷效率就越高。此外,同种半导体材料的Z值还与温度有关,温度不同Z值也不同。

3 半导体制冷的特点

与传统的蒸气压缩式、蒸气喷射式和吸收式制冷等技术相比,半导体制冷具有以下特点:不使用制冷剂、不污染环境,绿色环保;体积小、重量轻、结构简单、容易操作;可只冷却某一专门元件或指定空间;可在失重或超重等极端环境下运行;制冷系统无机械转动,所以无噪音、无磨损、运行可靠、维护方便;便于通过改变电流方向达到冷却和加热的不同目的;具有发电能力,在制冷组件两面建立温差可产生直流电;冷却速度不仅快,而且便于通过工作电流大小实现可控调节。

4 半导体制冷应用于投影仪展望

投影仪产生的热量最主要来自于灯泡。无论是传统的金属卤素灯泡,还是UHE、UHP等冷光源灯泡,在使用过程中都会发出很

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top