嵌入式零树小波EZW编码及其算法改进
化,而剩余集合I=X-S。集合I依次分解出三个最低频的块(如HL3,LH3,HH3)和剩余集合I。然后对剩余集合I再进行一次分裂,分解出三个次最低频的块(如HL2,LH2,HH2),如此重复直到把所有的块分裂出来,直到剩余集合I变为空集。这样就可以把各个块依次排列,重要图扫描就是以此顺序来进行。 通过以上两步,就可以把重要系数重要性放到表LSP中,以便下一步的逐次量化。 3)量化过程 SPECK算法的量化、求初始阈值与EZW算法相同。 SPECK算法的特点如下:①以上三种算法在扫描顺序和量化过程是一样的,差别在于对不重要系数的表示方法,EZW采用零树结构,SPIHT采用空间方向树,SPECK采用块结构。SPIHT算法在一个集合中包含了更多的不重要系数,提高了压缩率,而SPECK算法采用易于计算和并行处理的块结构,提高了编码速度。 ②另外,SPECK算法还有其它一些特点。需要小的动态存储,有强的容错性。因为块间是独立编码的,在传输发生误码时,只有误码所在的块受到影响。而在EZW和SPIHT中误码将影响到整个树结构,对图象的破坏较大。4可逆嵌入小波压缩CREW(Compression with Reversible Embedded Wavelets) 虽然EZW、SPIHT和SPECK算法提供了从无损到有损的编码方法。编码可以在任何地方截断得到一个有损压缩,也可以一直编码直到一个准无损的压缩文件。在这里使用准无损是因为这三种算法没有考虑使用可逆的小波变换,即整数到整数的变换。这样在小波变换中就引入了量化误差。在一些场合要求实现从有损到无损的渐进传输,如医学图象的传输等。针对这一要求, 可逆嵌入小波压缩(CREW)强调了小波变换在渐进图象编码中的重要性。 现在研究用于图象编码的可逆小波变换的越来越多,这些变换在有限算术精度意义上是可逆的,是把整数变换为整数,它们是从准线性小波变换得来的。正是由于这些特性,这种小波变换非常适用于无损编码、最小内存占用、最小计算复杂性的压缩系统中。另外,这些变换对渐进从有损到无损的图象恢复以及有损压缩中感兴趣区的无损恢复特别有利。 对无损压缩,图象内容是一个影响变换效率的重要内容。对光滑图象,5/11-C,5/11-A及13/7-T变换最为有效,而5/3变换对含有大量高频信息的图象特别合适。 表1 图象编码常用的可逆的小波变换 显然,没有一种变换对所有图象不但具有低的计算复杂性还有好的有损和无损压缩性能。所以,使用时要根据具体情况加以选择。例如,在需要低的计算复杂性时,5/3变换是合适的选择,因为它在具有相当好的无损有损压缩性能同时具有低的计算复杂性[18]。 CREW是一个包含了有损和无损静态图象压缩系统。它使用了一个最好小波滤波器的可逆近似。对小波系数的编码使用了与EZW相似的Horizon方法,该方法利用了变换域中空间及频率信息的基于内容的编码。它提供了最新的对医学图象的无损压缩(深度大于8比特)的方法,也提供了在一个系统中对8比特深的图象的从有损到无损的压缩. 表1是一些常用的用于无损压缩的小波滤波器,根据具体使用可以选择。 5 结论: 由以上分析可见,在嵌入式小波编码的研究主要从以下三个方面进行。一是对小波系数的合理组织。研究表明,在图象的低比特率编码中,用来表示非零系数所在位置的开销远远大于用来表示非零系数数值的开销[15]。因此,内嵌算法中排序算法的优劣和排序信息的处理决定了整个编码算法的效率[14]。对这些系数进行合理排序,就可以得到更高的压缩比如SPIHT算法以及快的编码速度如SPECK算法。以上三种编码算法的根本区别在于对重要图的排序方法,如何以快的排序速度和少的重要图编码来寻找重要图是嵌入式编码算法研究的一个主要研究方向。二是从对重要系数的量化方法上进行研究,进一步提高数据的压缩率。三是从小波滤波器的构造出发,找出适合具体应用的可逆小波变换,以实现图象的从有损到无损的压缩。
- 用FPGA实现FFT算法(06-21)
- FIR数字滤波器分布式算法的原理及FPGA实现(08-07)
- 基于算法的DSP硬件结构分析(04-02)
- 基于DSP的音频会议信号合成算法研究(05-10)
- 基于DSP的Max-Log-MAP算法实现与优化(05-27)
- 一种长序列小波变换快速算法的DSP实现(08-11)
