技术创新促进高级 OCT 成像应用发展
过去几年间,光学相干断层扫描技术 (OCT) 获得长足的发展。自从 OCT 问世以来,眼科医生便运用近红外线技术拍摄眼后段结构的高画质影像。由于眼部组织呈半透明状,因此 OCT 可提供显现视网膜病变的影像,藉以诊断和监控青光眼及黄斑水肿等视网膜疾病。如今,许多以 OCT 为基础的医疗应用已臻成熟,另外有多项全新应用正在开发阶段。
图 1. 眼科医生运用 OCT 仪器的范例
OCT 成像的原理与超声波类似,只不过是运用反射的近红外线做为成像媒介形成影像,而非运用反射的声波。近红外线光源 (一般为 800 至 1300 纳米) 被一分为二,形成两个光束。其中一束发射到取样组织上,另一束则发射到参考反射镜上。取样臂扫描组织时,干涉仪对取样组织后端反射回的光线执行数字信号处理算法,以达到深度解析的轴位扫描。将这些扫描相互叠加即可形成组织的 2D 或 3D 影像。一般而言,OCT 能够以低于 10 微米的极高分辨率,解析 3 至 5 毫米组织深度的影像。
在第一代时域系统中,OCT 系统关键组件之一的参考反射镜是机械组件,因此动作缓慢,而且影像的分辨率有限。第二代 OCT 系统以固定式参考反射镜取代机械式参考反射镜,并运用光谱仪以及快速傅立叶变换 (FFT)、级数运算与对数压缩等强大的数字信号处理技术,以解析内嵌深度信息,并且与横向扫描数据实时结合,可使成像时间大幅缩短,同时提升影像分辨率。
OCT 在生物医学方面的应用
现在 OCT 医疗系统大多用于眼科,但在过去几年间,也出现了几项新兴的应用。例如,耳鼻喉科 (ENT) 医师及儿科医师也采用 OCT 技术作为诊断工具。一般而言,医生使用耳镜检查耳部、外耳道及鼓膜是否有细菌感染而发红的症状。而OCT 则可通过表皮及皮下膜的成像判断是否感染致病细菌,以提升诊断准确度。服用几次抗生素后,可使用 OCT 系统分析抗生素是否发挥效用。如果感染的生物膜已经去除,则患者可以停止服用抗生素。
其他新兴的 OCT 医疗应用包括牙科诊断系统及跨科手术技术运用。牙医可采用 OCT 成像技术来确定 X 光和目测都无法发现的早期龋齿及某些牙龈疾病,以进行更有效的预防程序。
在跨科手术方面,OCT 可在去除肿瘤的手术过程中分析有无癌症。一般而言,外科医生取出肿瘤周围组织时,总是希望去除所有的癌症细胞。去除的肿瘤及周围的组织会送至病理实验室进行几周的分析,然后做出手术后的书面报告。由于 OCT 影像在组织学和病理学应用当中采用相同的分辨率,因此手术室中的 OCT 系统能够让外科医生在手术过程中确切知道需要去除多少组织,同时留下多少安全边缘部份,采用如此的做法便不会错误去除未感染癌症的组织,因而省却后续手术的费用及痛苦。OCT 技术能够让医生实时看见组织学分辨率的影像,以便在第一次进行去除肿瘤的外科手术时做出更好的决定。
日后会有更多实行 OCT 的医疗应用。例如,OCT 能够搭配穿刺活检去除早期阶段的小肿瘤。对于罹患乳腺癌的病患,OCT 可搭配视觉及「智能型」信号处理技术,引导针插入确切的肿瘤位置,以查明疑似感染的组织,尽可能减少手术的侵入性。对于心血管患者,OCT 可搭配极小型导管支架,更准确得找出血管内支架或检查斑块积聚的情况。在这些类型的应用中,先进的数字信号处理技术不仅能够达到绝佳的影像画质,而且能够进行组织分类。
OCT 存储方式的改变
用于医疗成像的 OCT 技术首度推出时,采用个人计算机 (PC)作为系统平台,后来第二代系统得以修改,而目前开发中的第三代系统也将有所改变。多个 OCT 系统制造商已经或者即将采用嵌入式处理平台,其中配备单一或多核数字信号处理器 (DSP),而非 PC 中使用的通用处理器 (GPP)。与传统运算方式相比,DSP 的每毫瓦功耗所能达到的信号处理效能更高,这意味着运用可编程算法即可得出准确的结果,而不需要使用成本高的电源供应和散热器件。DSP 型片上系统 (SoC) 能够让功能强大的信号处理器与具有适当接口可进行数据处理、内存及储存的系统应用处理器并存,可帮助设计人员缩小系统体积尺寸并降低耗电量。采用 DSP 平台可缩小系统的实际尺寸并降低耗电量,因此不久的将来将有电池供电的可携式 OCT 系统问世。和便携式超声波系统一样,便携式 OCT 系统将有助于此技术获得诸多诊所及医师办公室的普遍采用。此外,对于处理自然灾害和意外事故的医疗与急救专业人员来说,便携式 OCT 系统将成为有效的即时诊断工具。
图 2. TI 多核 DSP 开发平台用于医疗成像的范例
未来的医疗应用
在未来新一代 OCT 医疗成像技术的趋势中,功能更强大的多核 (DSP
- 基于多核DSP的OCT医疗成像系统(04-03)
- 64位MIPS架构为OCTEON III处理器提供低功耗、高吞(09-12)
- 基于Yocto Project的嵌入式应用设计(07-22)
- 基于DSP芯片TMS320C6418的成像制导仿真系统设计(08-14)
- 基于高速双DSP的柔性机载实时图像跟踪系统研究(10-21)