微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一种便携式颜色自适应识别电路的实现

一种便携式颜色自适应识别电路的实现

时间:09-19 来源:互联网 点击:

为解决电致变色器件的颜色变化受外界环境颜色控制的问题,设计了一种基于单片机的便携式颜色自适应识别电路。与传统颜色识别电路相比较,该电路利用数字式的颜色传感器来获取外界环境颜色,产生的数字颜色信号易于单片机进行处理。在电路中,下位机部分主要负责获取电致变色器件变色参数及控制电致变色器件的颜色变化;而上位机部分主要负责把下位机获取的电致变色器件变色参数进行电压到颜色的曲线拟合,并通过蓝牙通信把拟合曲线参数传递给下位机。结果表明,该电路能自动根据环境颜色提供-4~4 V范围步进为0.1 V的电压来驱动电致变色器件的颜色显示,与传统的颜色识别电路设计相比,识别的精度和速度都得到了明显改善。

引言

  颜色识别技术经历了传统模拟识别方法和现代数字化识别两个阶段。传统的颜色识别方法采用模拟颜色探测器件来进行外界颜色获取,这种探测器件通常是在独立的光电二极管上覆盖经过修正的红、绿、蓝滤光片,经过光电转换产生对应的模拟信号;如果用微控制器对这些模拟信号进行处理,就必须采用额外的AD转换电路才能实现和微控制器的接口,而AD转换电路的引入增加了信号的处理时间,对整个系统的速度有很大的影响;此外,由于一般的AD转换存在量化误差,系统的精度受到很大的限制,这些使得传统的颜色识别方法逐渐被现在的数字式化的颜色识别技术所替代。随着半导体技术的发展,数字式的颜色传感器逐步取代了传统的光电二极管传感器。

  本文采用TCS230来作为系统的探测部分,基于该器件设计的颜色识别系统可以应用于军事领域,也可以应用于电致变色材料的变色研究以便获得材料的变色参数。

  1 TCS230简介

  1.1 主要特性

  TCS230是美国TAOS公司推出的可编程光到频率的转换器。它把可配置的硅光电二极管与电流频率转换器集成在一个单一的CMOS(Comple-mentary Metal Oxide Semiconductor)电路上,同时在单一芯片上还集成了红、绿、蓝(RGB)3种滤光器,是业界第一个有数字兼容接口的RGB颜色传感器。该数字兼容接口可以和微处理器直接连接,使电路设计变得简单;此外,TCS230内部每个颜色通道有10位的数字转换精度,大大提高了颜色的获取精度。

  1.2 引脚说明

  TCS230外部有8个引脚,其内部主要由光电二极管阵列和电流频率转换器组成,通过微处理器控制S0,S1,S2,S3的引脚电平可以控制TCS230输出红绿蓝三颜色频率值,通过标定可以得到数值化的BGB值,该值可以采用计算机来进行处理识别。

  2 便携式颜色自适应识别电路设计

  2.1 便携式颜色自适应识别电路设计原理

  电致变色器件是随施加在器件上的电压而显示不同颜色的模拟器件,一般变色的电压范围是-4~+4 V,且不同颜色显示的电压差值在0.1 V左右,因此本设计的重点是如何输出该电压值。

  图2为便携式颜色探测自适应系统框图。整个系统实现的关键是系统的控制模块,在本设计中采用单片机来进行数据和命令的控制。本文的主要工作是基于电致变色器件而设计相应的电路,电路的功能主要是控制电致变色器件的变色情况受外界环境的控制,从而起到识别作用。

  

  传统的颜色识别系统中涉及到多次模数-数模转换,该转换需要系统额外的处理时间,因此,减少这种模数-数模转换的次数则能提高系统的处理速度,其中最主要的方法是采用数字式的颜色传感器和带模数转换的单片机来实现。在本系统中采用了TCS230来作为外界颜色采集器件,其数字式的输出接口可以直接和单片机进行数据交换,不需要采用模数转换电路。单片机采用的是带16位的数模转换的低功耗器件AD-UC845,它可以把处理过的颜色数据通过内部集成的DA转换电路转换为模拟的信号,该信号用来驱动电致变色器件进行颜色重现。

系统的控制部分主要完成对颜色到电压的转换功能,通过颜色传感器获取外界环境的颜色值,然后通过处理把颜色值转换为电致变色器件能够精确显示该颜色的电压。本文提出了两种自适应的颜色到电压的转换方法:第一种方法采用matlab的曲线拟合方法,通过拟合颜色-电压曲线得到拟合参数,并得到颜色-电压函数;系统在该函数的作用下自动根据颜色值输出对应的电压从而控制电致变色器件的显示。第二种方法是采用比较大的存储系统,通过控制部分不断的给电致变色器件送入电压,然后获取对应的颜色数据,把电压-颜色值存入存储器建立一个数据库;系统运行的时候,会把外界的颜色值和存储的颜色值进行比对,若相同则把存储的对应电压值输出。由于要频繁的读取存储器,该方法的速度比第一种方法慢。通过对比两种方法的优缺点本系统采用第一种方法来实现颜色重现。 2.2 便

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top