51单片机和CPLD的望远镜伺服控制器设计
2.4 其他电路
转台上的限位信号、功率级的故障信号、外部逻辑数字信号等输入到CPLD,进行相应的逻辑处理(如输出使能和停止),从而达到对电机的有效控制和保护。
3 控制算法实现
在控制算法的实现上采用内模控制。其设计思路是将对象模型与实际对象相并联,控制器逼近模型的动态逆。对单变量系统而言,内模控制器取为模型最小相位部分的逆,并通过附加低通滤波器增强系统的鲁棒性。模型和被控对象模型精确匹配时,控制系统的输入等于输出。内模控制能够清楚地表明调节参数和闭环响应及鲁棒性的关系,内模控制器的动态特性取决于内部模型与被控对象的匹配情况。
内模控制原理框图如图5所示。其中,GP(s)为控制对象*****为内部模型,GIMC(s)为内模控制器,Gd(s)为外界干扰模型;x、u、y分别为给定输入、控制量、对象输出,d为外界干扰。在工业过程中,与经典PID控制相比,内模控制仅有一个整定参数,参数调整与系统动态品质和鲁棒性的关系比较明确,故采用内模控制原理可以提高PID控制器的设计水平。由于参数调节简单,此算法利于单片机程序实现。 大型光电望远镜属于大惯量系统,机械时间常数远大于电气时间常数,故可忽略电气时间常数的影响。对象的速度传递函数可简化为:
式中,Tm是机械时间常数,K是增益。因此可以选择内模控制器为:
式中,λ是滤波器参数。如图5所示,点画线内的部分可等效为反馈控制器:
当模型匹配时,存在内模控制系统闭环为一惯性环节。它的时间可以依据需要进行调节,λ值小有利于动态性能,λ值大则有利于增强鲁棒性。对于内模控制器输出不饱和而言,其等效于反馈控制器PI,因而,系统对阶跃输入和阶跃扰动的稳态误差为零,其抗干扰能力与常规PI完全一致。采用增量式PID控制算法,控制变量为:
式中,ek为第k步时刻速度误差,Ts为采样周期,μ(k)为当前控制量输出。
4 实验结果
采用基于高速单片机C8051F120和CPLDEPM570T100设计的伺服控制器硬件平台,实现大型望远镜转台的速度控制,驱动功率级采用H桥双极性功率放大器,反馈采用直径为413 mm的圆光栅,栅道64800,细分1000,分辨率为0.02"/s,采样周期1 ms,控制回路计算时间测得为120μs,包含圆光栅数据读取时间。望远镜的一转台的速度传递函数为:
利用板上的通信口发送实际的速度值(波特率115200bps,1ms发送1次),由上位计算机记录数据,测得的速度响应曲线如图6所示。起始阶段电机以20"/s的低速度运行,中间升至1800"/s,最后达到3600"/s,可见每个阶段的速度都非常平稳。在实际数据处理时,需要对零
位信号时刻的圆光栅数据进行处理,因该光栅有零位信号输出,计算速度时要进行合理的辨别方向和大小分析处理
结语
本文采用高速单片机和CPLD组成望远镜伺服控制器,实现了圆光栅四倍频细分电路、计数模块以及电机PWM驱动控制信号产生,并用单片机实现了内模控制算法、LCD显示和数据通信等功能。最终通过实验验证了该系统的可行性。
C8051F120 CPLD 电机控制 内模控制 LCD 相关文章:
- 嵌入式SoC单片机在雕刻机数控系统中的应用(10-15)
- 基于嵌入式系统的实时控制模块设计方案(09-06)
- C8051F120与RS422息线的时钟同步技术(10-15)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- 用CPLD实现FIR数字滤波器的设计(08-07)
- 基于DSP+CPLD的交流电机调速在水处理控制中的应用(11-27)