微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 汽轮发电机氢气内漏在线监测技术应用研究

汽轮发电机氢气内漏在线监测技术应用研究

时间:12-16 来源:互联网 点击:

汽轮发电机的安全稳定运行对电力系统乃至整个国民经济都具有十分重要的意义。大、中型汽轮发电机一般采用水-氢-氢冷却方式,即定子绕组水内冷、转子绕组氢内冷、铁芯及其他构件氢冷。随着机组容量的增大和氢压的升高,漏氢量的大小已成为考核氢冷发电机的一个重要指标。发电机可能存在的漏氢途径很多,归纳起来主要有两种:(1)从外壳直接漏到大气中,即“外漏”;(2)漏到密封油系统、定子冷却水系统、氢气冷却器、封闭母线套管软连接段或中性点软连接箱(下文简称“中性点联箱”)中,即“内漏”[1]。外漏通常可以通过涂抹皂液或使用移动式测氢仪检查发现,而内漏由于发现困难,成为氢冷机组运行的大患。
原国家电力公司2000年9月颁布的《防止电力生产重大事故的二十五项重点要求》中规定:“为防止氢冷发电机的氢气漏入封闭母线,在发电机出线箱与封闭母线连接处应装设隔氢装置,并在适当地点设置排气孔和加装漏氢在线监测装置。应按时检测氢冷发电机油系统、主油箱内、封闭母线外套内的氢气体积含量(浓度)”。
本文对目前国内常见的几种漏氢监测装置的工作原理和特点进行了对比,介绍了一种可以实时监测发电机出线套管、内冷水箱、密封瓦等关键部位漏氢情况并自动报警的新型发电机漏氢在线监测装置,并对其设计、构造、性能特点以及在焦作电厂#3发电机的实际应用情况进行了论述。
1 系统简介
焦作电厂#3发电机为东方电机厂生产的QFSN-200-2型氢冷汽轮发电机,1985年12月建成投产,装机容量200 MW,2001年增容至220 MW。发电机为水-氢-氢冷却方式,其密封瓦为双流环式,内冷水箱为开启式。发电机三相出线套管分相接入封母软连接段,中性点3根套管均接入中性点联箱。
该机组自投运以来,多次发生运行中漏氢。其中的氢气内漏故障因其查找难、危害大,一直是机组运行中面临的难题。此前,该厂主要依靠计算机组每日漏氢量监测其漏氢情况,当漏氢量超标时进行查漏。上述漏氢检测方式费时费力(从漏氢发生到发现故障点往往需要两天以上),查找氢气冷却器漏氢时还需要降低机组出力,对机组运行的经济性和安全性均十分不利,亟需通过先进的监控装置对发电机氢气内漏做出及时准确的判断。
2 对比分析
目前国内生产的该类装置从工作原理上主要分为两种:(1)热导型:由一台安装在发电机附近的热导式氢气分析仪通过管道从不同测点依次抽取气样进行检测,分析各测点的氢含量;(2)传感器型:用氢敏传感器做采样头,把发电机就地测点处的微量氢浓度的变化转变成电信号,由装在集控室或就地的电子仪表进行连续在线监测。
热导型漏氢循环监测装置需要配备抽气泵、气体取样管路、时间继电器、电磁阀,以一定的时间间隔自动依次循环进行测量,具有测量范围宽(0~100%)的优点。但同时也存在对高、低端浓度(1%以下和95%以上)测量精度低、反应滞后(30 min~2 h),油、水系统测点需加装干燥、过滤装置,抽气泵易损易泄漏,安装、维护成本高等缺点,用户已逐渐减少。
氢敏传感器型漏氢监测装置由采样头、主机和连接电缆三部分组成。采样头安装在气体采样处,主机安装在集控室或发电机附近,两者之间以电缆连接。该类装置可实现发电机漏氢的多通道在线监测,具有结构紧凑、安装和使用简便、工作稳定可靠、现场维护工作量小、灵敏度高、响应和恢复时间短等优点,是目前较为常见的漏氢监测方式。
采样和检测是漏氢监测装置工作过程的关键环节。根据采样原理的不同,市场上常见的传感器型漏氢监测装置主要有透氢膜采样和纳米管束采样两大类。
透氢膜型漏氢监测装置的采样头气室中装有能将气体与油、水、灰尘进行分离的透氢膜片[2]。使用透氢膜采样,现场的氢气所带的油气和水粘附在透氢膜上,易使其发生阻塞或老化穿孔,造成漏报、误报和传感器侵蚀,传感器整体寿命通常较短。
纳米管束型漏氢监测装置采样头中的纳米管束与透氢膜作用相同,但其油、水隔断能力相对较强(可达传统透氢膜的10倍以上),可以直接伸入带压的油、水中采集其中的氢气,不会出现漏油、漏水现象,也不存在内冷水箱满水位时浸泡采样头、损坏仪器和设备的问题。
根据传感器内氢敏元件的不同,目前国内常见的传感器型监测装置主要分钯栅氢敏传感器型和金属铂氢敏传感器型两大类。
钯栅氢敏传感器由钯栅场效应晶体管(Pd-MOSFET,简称钯管)、稳定补偿部件、加热器、测温元件构成,属于半导体气敏元件的一种。其检测原理是利用钯管开启电压随氢气浓度变化的特性检测氢气浓度,具有对氢气选择性好、灵敏度高、功耗低、响应和恢复时间短、工作温度低以及气-电转换过程中不消耗氢等优点。但同时主要存在两方面不足:(1)线性范围窄,钯管本身对氢气的响应是非线性的,浓度越高响应越低,需要在仪器设计上采用线性化补偿电路使读数线性化;(2)稳定性较差,输出特性随环境温度、湿度等影响而漂移,需采取补偿措施。钯栅氢敏传感器基本结构如图1所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top