微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > RBF网络和贝叶斯分类器融合的人脸识别方法设计

RBF网络和贝叶斯分类器融合的人脸识别方法设计

时间:12-28 来源:互联网 点击:

引言

本文基于人脸图像分块和奇异值压缩,进行RBF 神经网络和贝叶斯分类器融合的设计。将人脸图像本身的灰度分布描述为矩阵,其奇异值特征具有转置不变性、旋转不变性、位移不变性、镜像不变性等诸多重要的性质,进行各种代数和矩阵变换后提取的代数特征是人脸的表征。由于整体图像的奇异值向量反映的是图像整体的统计特征,对细节的描述还不够深入,本文模拟人类识别人脸的模式,在图像分块和加权的基础上,突出待识别人脸的骨骼特征,近似于人类在识别人脸时自动剔除同一人脸的变化部位的差异能力

径向基函数(RBF)网络是一种性能良好的前馈型三层神经网络,具有全局逼近性质和最佳逼近性能,训练方法快速易行,RBF 函数还具有局部响应的生物合理性。RBF神经网络隐含层结点使用了非线性传输函数,比单层感知器网络具有更强的分类能力。在隐含层中心确定的情况下,RBF神经网络只需对隐含层至输出层的单层权值学习修正,比多层感知器具有更快的收敛速度,这也是本文选择RBF神经网络作为分类器的原因。

在 RBF 神经网络构建和初始化采取有监督的聚类算法,在网络参数的最终调整和训练方面采取 Hybrid学习(HLA)算法。在隐层参数固定的条件下,由线性最小二乘法计算隐层和输出层之间的连接权值,由梯度下降法调整隐层神经元的中心和宽度。这种混合学习算法,能使RBF网络逼近Moody准则下的最优结构,即:在没有其它先验知识的情况下,与给定样本一致的规模最小的网络就是最好的选择。从而保证该网络具有较好的泛化能力。

贝叶斯网络是一个带有概率注释的有向无环图,图中的每一个结点均表示一个随机变量,图中两结点间若存在着一条弧,则表示这两结点相对应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的。网络中任意一个结点X 均有一个相应的条件概率表(CONditional Probability Table,CPT),用以表示结点X 在其父结点取各可能值时的条件概率。若结点X 无父结点,则X 的CPT 为其先验概率分布。贝叶斯网络的结构及各结点的CPT 定义了网络中各变量的概率分布。

奇异值分解SVD

奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。

奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。

对于任何一个矩阵A∈Rm×n,利用奇异值分解将其转化为对角矩阵。

设A∈Rm×n(不失一般性,设m≥n),且rank(A)=k,则存在两个酉矩阵Um×m和Un×n及广义对角阵Dm×m使下式成立:

其中U的列向量是AAT的特征向量,V的列向量是ATA的特征向量,T表示转置。

称为矩阵A的奇异值, ui(i=k+1,…,m)是AAT对应于λi=0的特征向量,vi(i=k+1,…, n)是ATA对应于λi=0的特征向量。如果矩阵A代表一幅人脸图像,则式

表示对该人脸图像进行了正交分解,将矩阵

中主对角线上的奇异值元素连同中剩余的(ri-k)个0组合构成一个n维列向量

由于任何实矩阵A对应唯一的奇异值对角阵

,因此,一幅人脸图像对应于唯一的奇异值特征向量。

(1)从人脸数据库选择人脸作为识别训练集;

(2)将被选入训练集的人脸图像几何归一化处理;将被选入训练集的人脸图像灰度归一处理;

(3)将预处理过的人脸图像划分成大小为的子块;

(4)将每一幅图像变为一个列向量(先分别将每一个子块所有向量排成一列,再将所有子块按顺序排成一列);然后以子块为单位进行;

基于面部骨骼特征、眼睛的分布、鼻子的形状等结构特征,是鉴别人脸的主要依据。将每一幅人脸图像所形成的矩阵划分成…等个二维矩阵分别降维为一维列向量。求训练集中所有对应子块的平均值,

;再对每一类样本中的所有对应子块求平均,

;对应子块进行样本规范化,

并求协方差矩阵:

从中取 m 个较大特征值对应的特征向量,构成对应子块的特征脸空间 W1 ,即W1 =[w11,w12,…,w1 m ]T 。再对训练样本进行规范化处理

,投影到特征脸空间,获得投影特征为:

。对任一测试样本对应子块进行规范化处理,即

,然后得到投影特征,即

 用上述方法逐一对每个子块进行处理。得到

基于特征分块贝叶斯分类器设计

每个基于特征分块的贝叶斯分类器,利用了所对应的图

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top