基带信号源中CDMA2000下行基带信号模块的实现方案
的基本思想和理论依据。扩频通信系统扩展的频谱越宽,处理增益越高,抗干扰能力就越强。在接收端用与发送端完全相同的扩频码序列来进行解扩。
2.5 基带滤波
基带部分滤波器就是脉冲成形滤波器 (LPF)。由于输出信号是带宽受限的,所以扩频调制器的输出码片流要利用脉冲成形滤波器进行滤波。
2.6 QPSK调制
QSPK正交调制器方框图如图5所示,他可以被看成是由2个BSPK 调制器构成。输入的串行二进制信息序列经串/并变换,分成两路速率减半的序列,电平发生器分别产生双极性二电平信号I(t)和Q(t),然后用载波分别进行调制,相加后即得到QPSK信号。QPSK调制效率高,要求传送途径的信噪比低,非常适用于CDMA移动通信系统。
3 CDMA2000下行链路处理模块的实现
第一步在实现基带模块之前,首先必须根据应用系统的目标确定系统的性能指标、协议要求。
第二步是根据系统的要求进行芯片的选择,可供选择的芯片包括DSP、FPGA 和单片机。其中,DSP 芯片可单独完成整个基带部分的处理,典型的以DSP为核心的基带模块的主要特点 是方便的可测量性、单个信道的低耗费以及简便的软硬件升级性。也可选择DSP与FPGA 搭配使用,FPGA+DSP结构最大的特点是结构灵活,有较强的通用性,适于模块化设计,从而能够提高算法效率,同时其开发周期较短,系统易于维护和扩展,适合于实时信号处理。采用不同的芯片进行处理,会导致不同的系统性能,要得到最佳的系统性能,就必须在这一步确定最佳的芯片选择搭配。
在完成第二步之后,就是总体设计确定软硬件分工。基带模块的设计包括硬件设计和软件设计2个方面。硬件设计首先要根据系统运算量的大小、对运算精度的要求、系统成 本限制以及体积、功耗等要求选择合适芯片。然后设计芯片的外围电路及其他电路。软件设计和编程主要根据系统要求和所选的芯片编写相应的汇编程序,若系统运算量不大且有高级语言编译器支持,也可用高级语言(如C语言)编程。由于现有的高级语言编译器的效率还比不上手工编写汇编语言的效率,因此在实际应用系统中常采用高级语言和汇编语言的混合编程方法。
硬件和软件设计完成后,需进行硬件和软件的调试。软件的调试一般借助于芯片开发工具,如软件模拟器、开发系统或仿真器等。硬件调试一般采用硬件仿真器进行调试,如果没有相应的硬件仿真器,且硬件系统不是十分复杂,也可以借助于一般的工具进行调试。系统的软件和硬件分别调试完成后,对软硬件进行系统集成。最后,完成系统调试。
4 结语
本设计的基带信号发生器CDMA2000下行链路基带模块设计将移动通信中的各种关键技术融为一体,形成具有整体性的CDMA数字基带处理技术。在CDMA2000基带设计过程中融入了软件无线电的思想,设计出信号源数字基带处理的软硬件实施方案,实现时运用了FPGA+DSP这样一种灵活的现代电子技术方案。
基带 实现 方案 模块 下行 信号源 CDMA2000 信号 相关文章:
- CDMA2000基带信号发生器的FPGA+DSP实现(05-29)
- 基于FPGA的通信系统基带验证平台的设计(06-11)
- 基于DSP的扩频电台基带模块的设计与实现 (06-04)
- 高通道密度的媒体与基带处理器SP2704设计(04-02)
- TD-LTE多模基带平台ARM子系统的运行流程控制和异常定位分析(08-24)
- DMR通信协议与数字对讲机基带模块 的设计(09-17)