对于防止单片机系统过程通道中干扰的探讨
1 引言
干扰一般是以随机出现的脉冲形式进入单片机系统的,主要来自电网上和系统内负载突变形成的交变磁场和电场耦合系统内部,形成尖峰脉冲电势或电流叠加到某些芯片的数据线、地址线或控制线上,从而扰乱输入信号,破坏某些器件的工作状态。干扰窜入单片机系统的渠道主要有两条:空间场干扰 (通过电磁波感应窜入系统)和过程通道干扰。一般来讲,空间干扰在强度上远小于过程通道干扰,而且空间干扰可用良好的屏蔽、正确的接地方法以及采取必要的软硬件滤波加以解决。这里只就过程通道的防止干扰设计进行探讨。
2 过程通道的抗干扰设计
就过程通道而言,由于它直接与外部设备相连,因此无论是数字量的输入输出通道,还是模拟量的输入输出通道,都是干扰窜入渠道。要截断这条渠道,一是要去掉外部设备与过程通道之间的公共地线,实现彼此电隔离;二是要合理设计元器件的布局和它们之间的走线,减小电路和分布电容、杂散电磁场,抑制各种干扰噪声的产生。
3 数字量通道的抗干扰设计
由于数字量(开关量)的状态只有两个,叠加在数字信号上的干扰只有幅度和宽度都达到一定量值时才能起作用,因此在硬件设计中应突出考虑隔离问题。
3.1开关量输入
对于开关量输入(包括数字信号),最有效的办法是采用光电隔离措施和增加必要的电路,将供电电源与主机电源分开独立使用。
3.1.1 直流输入
直流输入电路示于图1。由图中可见,输入电路与单片机应用系统主机采用不同电源供电,使两部分电路完全隔开,信号在光耦合器中是以光来传递的。
光耦合器的传递特性是:在输入端发光管通以电流IF大约2μs以后,输出三极管才导通。这样,小于1μs的干扰信号就不能通过光耦合器有效地传输。另外,在输入电路结构上还可以采用常规的方法来抑制干扰,比如在输出级加π型滤波网络,其网络幅频特征曲线如图2所示。
在直流输入的数字量接口中,主要是通过光耦合来隔离主机与外部的干扰信号,并在接口电路上想办法来抑制干扰。
3.1.2 交流输入
交流输入一般是先把交流整流成直流,然后经滤波降压送入直流电路中(图3)。另外,现已有双向光耦合器问世,它将使电路更为简单可靠(图4)。
3.2 数字量输出
单片机的数字输出信号,在条件可能的情况下都需加隔离和驱动电路,经常使用的有光耦合器和继电器隔离。输出级都需要带一定的负载,是整个系统耗电较多的一部分。为了防止输出级的通断干扰经电源影响主机,一般也要采用独立电源,并与主机不共地,这样就可以很好地防止回馈干扰。现在市场上可以买到各种标准的输出模块(固态继电器),这些模块的输入接口可以是TTL电平,也可以是CMOS电平,内部经光电隔离输出给交流开关、直流开关或继电器驱动大功率负载。
4 模拟通道的抗干扰设计
由于模拟量信号的有效状态有无数个,所以叠加在模拟信号上的任何状态都会起干扰作用。因此在硬件设计时,抗干扰屏蔽的位置越往外推越好。也就是说,最好把光电耦合器设置在A/D转换模拟量输入和D/A转换模拟量输出的位置上[2]。要想把光电耦合器设置在这两个位置上,就要求光电耦合器具有能线性变换和传输的特性。此类光电耦合器目前在市场上能见到。若没线性的光电耦合器,则对于A/D电路来说,光电耦合器应设在A/D转换芯片和模拟多路开关等芯片的开关量信号线上。还应注意光电耦合器两边的输入输出回路电源应分别供电,接地电路分开。
4.1 模拟量输入
由于集成电路内部电路复杂,因此它的噪声干扰较大,即使是那些被称为极低噪声的集成,在模拟量输入幅值比较小时,其噪声干扰也不容忽视。因此对需要放大的模拟量输入信号可以采用前置放大差动电路[3],提高输入电阻,采用对称的电路结构,获得较大的共模抑制比。
对于直流变量模拟信号,在接口电路中必须采用直接级间耦合,要注意温度对零点漂移的影响。在有特殊要求的场合可以采用MC7650斩波自稳零运算放大器,它的温度漂移几乎为零,达到10μV/℃。在对输入量极小的进行放大时,要在前置级尽量采用低输入失调电压的运放,避免由于器件的误差而影响系统的精度。但由于模拟信号在传输过程中一般需共地,要实现接口与主机完全隔离就非常困难。因此,在设计接口时一定要很好地处理地线与信号线关系。还可以采用双电源供电,为运算放大器单设电源,同时为计算机接口电路--A/D转换器另设一套电源,这样就可以防止电源的干扰。在处理两套电路的地线时,在印制板上要各走自己的回路,两种地线只在交汇处有一点连接。如图5所示。
对于信号还要采取强有力的滤波措施,尽量消除一切尖峰干
通道 干扰 探讨 过程 系统 防止 单片机 对于 相关文章:
- 数字频率合成器的FPGA实现(08-07)
- TMS320C6713在双通道数字去噪声系统中的应用(11-25)
- 多通道同步数据采集及压缩系统(08-12)
- 高通道密度的媒体与基带处理器SP2704设计应用(05-21)
- 基于FPGA的多路视频通道控制 (01-09)
- TMS320C28x模数转换器的精度校正 (07-18)