基于DSP和FPGA的导航计算机系统设计
光纤陀螺的脉冲信号经信号调理电路进入计数器模块。计数器模块由5片定时器芯片8254实现14路16位计数器。5片芯片共用I/O地址空间,使能端长有效,输入时钟通过二选一电路来选择输入信号。6路脉冲信号工作,同时计数,确保光纤陀螺输入参数的准确性和实时性。脉冲信号计数和光纤陀螺之间在FPGA中以VHDL代码形式描述。
GPOXP=DRP AND (NOT GPOX) AND C(0);
GPOXN=DRP AND (NOT GPOX) AND C(1);
GPOYP=DRP AND (NOT GPOY) AND C(2);
GPOYN=DRP AND (NOT GPOY) AND C(3);
GPOZP=DRP AND (NOT GPOZ) AND C(4);
GPOZN=DRP AND (NOT GPOZ) AND C(5);
其中,GPOX,GPOY,GPOZ分别为8254芯片3个定时器/计数器输出信号;GPOXP,GPOXN,GPOYP,GPOYN,GPOZP,GPOZN分别经过5406反相输出后,依次对应CTRLGX+,CTRLGX-,CTRLGY+,CTRLGY-,CTRLGZ+,CTRLGZ-信号。
陀螺脉冲、加表脉冲和抖频脉冲是外部传感器的输入信号,是导航计算机的“眼睛”,计数要求最大计数频率为1MHz,计数精度为±1,导航计算机依靠解析这些信号进行定位,各导航系统的信息通信是否通畅、精确直接影响导航系统的性能,因此对这些信号的处理及可靠性要求非常高。如果这些电路出现故障,导航计算机则几乎无法使用;如果处理器采集的数据误差大,导航计算机的定位将不够准确,因此该部分电路是导航计算机的设计关键。针对这部分关键电路设计了专用测试电路。在系统加电初始化完成后,通过软件控制,硬件将输出标准的脉冲信号切换到传感器脉冲信号的输入端,然后进行数据采样,观察测试数据的准确性是否满足系统要求,实现了功能电路的自测试。
光纤陀螺的参数通过RS 422接口传递给处理器解算。RS 422电路由一片8252实现一路串行接口,通过MAX488芯片实现RS 422接口的转换,可实现最高1 Mb/s的数据传输速率。支持点对多的双向通信,数据信号采用全双工差分方式实现,信号的方式与接收在同一时刻进行而互不干扰,提高系统的响应速度。
ARINC429数据总线是为航空电子系统通信规定的航空工业标准,它为系统互联提供统一平台,担负着交联各个电子设备的重要责任。RS 429电路选用Harris公司的HSI3182和HSI3282,实现ARINC429数据接口的扩展,接收和发送中断均连接至系统中断控制器。传输的位速率为100 Kb/s,保障了各系统间的数字信息快速而可靠的传输。
导航计算机与上位机之间以RS 232串口形式进行数据交互,完成软件调试和串行通信(包括初始化参数的装载、导航功能的选择和导航功能的输出)。DSP芯片通过扩展异步串行接口,形成两路UART实现异步全双工串口通信,传输速率可达1.5 Mb/s。TTL电平和RS 232电平转换通过MAX232芯片实现。
3 导航计算机软件设计
导航计算机软件采用DSP集成开发环境CCS实现。CCS是TI公司推出的DSP开发环境,集成Sireulator和Emulator仿真器驱动程序。它包含每个TI器件的编译器、源代码编辑器、项目开发环境、调试器及许多其他功能,与C语言有良好的数据交互接口。CCS提供的单用户界面能使用户完成应用程序开发例程的每一步。CCS主要包括:CCS代码生成工具;CCS集成开发环境;DSP/BIOS插件程序和API;RTDX插件、主机接口和API。
组合导航的软件算法解算过程通常采用卡尔曼滤波器实现,通过反复迭代实现。软件实现的功能分为4部分:系统初始化、数据采集任务、捷联导航结算任务和命令参数发送任务。DSP上电复位后进行系统初始化工作,配置各寄存器和内部资源的状态为确定的初始状态。如果监测到中断控制器的中断信号,首先读取RS 422和RS 429接口电路的数据,进行航向辅助的惯导数据解算。A/D转化结束产生中断,DSP从数据缓冲区读取到转换结果,得到飞行参数信息,并且将此时所有传感器的数据进行汇总分析,实现一次卡尔曼滤波。将得到的数据对捷联惯导的运算进行误差修正,得到系统最优的导航信息,通过串行口输出给上位计算机显示并对飞行器进行适当的调整。
软件成功执行了捷联算法,各个功能函数执行正确,并且导航结果有较好的精度。在系统加电后,导航计算机的引导程序首先读取系统状态信息。调试模式下可通过宿主机的开发调试工具CCS进行应用程序的编辑、编译、加载和调试,调试通过后使用编程工具将应用程序固化到系统FLASH中,从而提高了导航计算机的开发调试能力。软件的执行流程图如图4所示。
激光捷联惯性导航系统是一种自主式导航基准系统,它成本低廉,结构简单,可靠性高,广泛应用在飞机、导弹、火箭、舰船、卫星等设备中。试验结果表明,系统的方案设计达到要求,导航精度符合设计要求。在硬件设计时充分考虑了系统的扩展,预留有串行口等扩展接口,可方便接入GPS接收机等外部导航设备,方便形成组合型导航系统,对导航系统小型化的研究和推广具有积极的意义。
- 浅谈人机界面设计(12-12)
- 什么是单片机?单片机的分类(12-02)
- 第1课 单片机概述(12-01)
- 单片机常见问题10问(03-04)
- 单片机基础知识四问(02-23)
- 污水处理自动化监控系统通讯解决方案(12-05)