微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一种温控器产品创新设计的解决方案

一种温控器产品创新设计的解决方案

时间:03-12 来源:互联网 点击:

过感应蒸汽温度实现水温控制的。由于对蒸汽温度的测量相对容易,因此用时较少。此方案适合于只要求烧开水的用户。其实现温度控制的主板、控制面板示意图如图2所示。

3.2 方案二: 测量壶身温度实现温度控制

将热敏电阻温度传感器放在壶身侧面处(为了避免修改壶身结构,最好放在手柄与壶身交接的地方),MCU根据壶身温度与水温之间的规律关系编程,实现自动控制温度。但是热敏电阻的放置结构有一定的要求,壶身上与热敏电阻接触的地方需要比其他地方的壁厚薄一些,且该地方需要密封,以防止受到空气温度的影响;壶身上热敏电阻与水之间需要有一个介质,以防止壶水被污染。该方案可以任意控制水温,因此适合于有多种水温要求的用户。

3.3 方案三: 测量发热盘底部的温度实现温度控制

壶身底部发热盘上使用发热丝,发热丝接电源线的地方因为发热较少称为冷端,其他部分因为发热较多称为热端。将热敏电阻置于壶身底部发热盘靠冷端处,根据实验数据,得出水温与发热盘温度之间的关系,MCU根据此关系进行编程处理,这样热敏电阻测得的发热盘的温度就可以转换成水的温度并显示在显示屏上,同时可以检测发热盘的温度以防止干烧。该方案对总体结构设计要求较低,更方便实现防干烧功能。

上述三种方案可满足不同用户的个性化要求,以满足电热水壶系列化设计需要。下面以方案三为例,进行系统结构优化设计。

4 结构优化设计

4.1 热敏电阻放置位置的确定

保证测量准确性的关键步骤是找一个最佳位置放置热敏电阻,分别对1000W、800W功率,1.7L、1.0L水位选用各个不同的点进行了实际测试,测试的内容及结果如表1和图3所示。

由表1和图3可以看出,将热敏电阻放置在发热盘靠冷端处,与实际水温最为接近。

热敏电阻放置位置结构设计如图4所示。

4.2 热敏电阻与水温及发热盘温度的关系

温控器通过热敏电阻测量温度时,MCU根据水温、热敏电阻测定温度、发热盘上热敏电阻安装处温度三者之间的对应关系编程,进行数据处理,以控制加热电路。

实测方法:在220V±10%电压情况下,采用不同的水量(1.0L、1.2L、1.5L、1.7L),将热敏电阻放在发热盘底部,热电偶采用分别放在热敏电阻安装处、塑胶管里的热敏电阻安装处以及壶水里面,从水温40℃开始计时,用温度巡检仪每10秒打印一次数据,到水温90℃结束加热,然后继续打印,直到水温开始下降为止。

通过实测,得到放置在水壶底部发热盘上的热敏电阻与水温及发热盘温度的关系:选取242V电压、1.0L水量时实测结果如图5所示;选取242V电压、1.2L、220V电压、1.5L、198V电压、1.2L、1.7L实测结果如图6所示。

由上述图形比较可以看出:水温、热敏电阻实测温度、发热盘上热敏电阻安装处的温度三者之间呈现有规律的变化:不管是冷水还是热水、发热盘有没有加热,水温>热敏电阻实测温度>发热盘温度,壶内水的温度比该处发热盘的温度要高7±3℃, MCU都将根据这些规律进行编程。

5 软件设计

主程序流程图如图7所示。系统上电后,MCU电路加电,程序开始运行,系统初始化:首先检测是否有按键按下,若有按键按下,读入用户设定的温度并显示;若没有检测到按键按下,设定温度采用缺省值100℃,同时显示实时温度。启动加热,当温度达到设定温度时,停止加热且音乐提示。防干烧功能由中断程序完成,发热盘温度达到110℃时,产生中断,MCU立即断开加热电路。

创新设计后的温控器相对于机械式温控器具有以下优势:

(1)水温可以任意设定,可实现对水温的准确控制。

(2)烧水时没有最小水位的限制。

(3)系统功能可扩展,如增加定时功能等。

(4)电路板的大小和形状可根据结构要求设计,可以满足各种形状电水壶的要求。

(5)可满足不同用户的个性化需要。

基于三星MCU的温控器设计,摆脱了对机械式温控器金属片的依赖。经实际检测,样机性能指标达到了设计要求,且该温控器还可以用于其他小家电产品,具有广阔的市场前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top