微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > PCB设计中的电磁兼容性考虑

PCB设计中的电磁兼容性考虑

时间:03-19 来源:互联网 点击:

其中Vr是终端电压,Vi是初始电压,Rt是终端阻抗,Z0是线路的特性阻抗,ρ为反射率。当Rt=Z0时,反射率为0,即没有反射,电压保持不变;当Rt为无穷大,即终端开路,此时反射率为1,电压100%反射,此时的电压为原来电压值得两倍;如果Rt=0,即终端短路,反射率为-1,则总电压为零。从中可以看出失配越大,则反射电压就越大,传输线若两端都不匹配,就会产生电路振荡。

针对传输线效应,通常采用控制走线的长度以及调节走线宽度改变特制阻抗来抑制传输线效应。例如:则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7.5英寸。工作频率在50MHz布线长度应不大于2英寸。如果工作频率达到或超过75MHz布线长度应在1.5英寸。对于GaAs芯片最大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指电路网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。当需要不同的阻抗时,最容易的方法就是改变线宽。

3.4电磁兼容设计中的电源问题

在PCB设计中,电源系统(包括相对高电位于相对低电位)主要可能引起两个问题:一个是电源(或高电位)噪声,即在该数字电路系统中,CPU电路、动态存储器件和其他数字逻辑电路在工作过程中逻辑状态高速变换,造成系统电流和电压变化而产生的噪声,温度变化时的直流噪声以及供电电源本身产生的噪声等。另一个是地线(或低电位)噪声,即在系统内各个部分的地线之间出现电位差或因存在接地阻抗而引起接地噪声。

PCB上的电源电压波动和地电平波动容易导致信号波形产生尖峰过冲或衰减振荡,造成数字IC电路的噪声容限,进而引起误操作。其原因主要是数字IC的开关电流和电源线、地线的电阻所造成的电压降,以及元器件引脚的分布电感所造成的感应电压降。分布电感引起的电压降影响比线路阻抗大,这是设计中必须考虑的一个方面。

当PCB中CMOS部分是数字模拟混合电路时,如D/A转换,当数字部分接电源VDD后,VDD的电能会耦合到模拟部分,部分VDD电压出现在模拟电源的管脚上,对整个系统性能有很大的破坏,甚至导致系统不能工作。

由于以上的原因,PCB上电源布线应该根据电流的大小,尽量加大电源线线宽,以期减少环路阻抗。在多层PCB中采用电源层和地层,同时减少电源线到电源层或地层的线长。另外,电源线和地线的走向应该和数据线或地址线传递的方向一致,这样可以减少干扰,增强系统的抗噪声能力。

4.展望

随着电子科技的发展,系统时钟和速度不断提高。现在的计算机系统中时钟工作频率经常达到上GHz。当元件工作在高频时,为适应更小的时钟脉冲间隔,信号跳变沿速率加快,因此RF频谱分散加重了,产生EMI干扰的可能性增加了,要设计符合EMC的产品难度提高了。但是只要根据产品的特性以及频率特性总可以找到相应的设计方案。

一个简单的电磁干扰模型包括三个因素:必要的能量源、必要的接收器、在接收器和能量源之间必须有能量传输的耦合路径。只有这三方面都存在时干扰才可能产生。工程师的任务就是决定系统设计中哪个要素是最容易消除的,并通过相应的PCB设计来实现这种消除EMI的思想   另外,在设计中尽量使用尽可能慢的逻辑系统。比如在大多数应用中,一个74HCT器件足以作为一个74ACT器件的临时替代品,同时具有产生更小RF能量的优点。一个总的设计思想就是不要使用比功能上所要求的或电路实际要求的更快的元件。  

参考文献

(1)Mark I. Montrose著. 刘元安等译. 电磁兼容和印制电路板理论、设计和布线. 北京:人民邮电出版社,2002.12

(2)曾峰等. 印制电路板(PCB)设计与制作. 北京:电子工业出版社,2002.11

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top