CAN控制器SJA1000及其应用
摘要:介绍CAN控制器SJA1000的特点、内部结构以及SJA1000的寄存器结构及地址分配;CAN协议通信格式。并以独立CAN控制器SJA1000为例,结合CAN协议说明了一种通用型CAN总线的开发与设计。
关键词:CAN总线索SJA1000单片机
1 SJA1000简介
SJA1000是PHILIPS公司早期CAN控制器PCA82C200的替代品,功能更强,具有如下特点:
①完全兼容PCA82C200及其工作模式,即BASIC CAN模式;
②具有扩展的接收缓冲器,64字节的FIFO结构;
③支持CAN2.0B;
④支持11位和29位识别码;
⑤位速率可达1Mbit/s;
⑥支持peliCAN模式及其扩展功能;
⑦24MHz的时钟频率;
⑧支持与不同微处理器的接口;
⑨可编程的CAN输出驱动配置;
⑩增强了温度范围(-40℃~+125℃)。
2 SJA1000内部结构
SJA1000的内部结构如图1所示,主要由接口管理逻辑IML、信息缓冲器(含发送缓冲器TXB和接收缓冲器RXFIFO)、位流处理器BSP、接收过滤器ASP、位时序处理逻辑BTL、错误管理逻辑EML、内部振荡器及复位电路等构成。IML接收来自CPU的命令,控制CAN寄存器的寻址并向主控器提供中断信息及状态信息。CPU的控制经IML把要发送的数据写入TXB,TXB中的数据由BSP处理后经BTL输出到CAN BUS。BTL始终监视CAN BUS,当检测到有效的信息头隐性电平-控制电平的转换时启动接收过程,接收的信息首先要由位流处理器BSP处理,并由ASP过滤,只有当接收的信息的识别码与ASP检验相符时,接收信息才最终被写入RXB或RXFIFO中。RXFIFO最多可以缓存64字节的数据,该数据可被CPU读取。EML负责传送层中调制器的错误管制,它接收BSP的出错报告,促使BSP和IML进行错误统计。
3 SJA1000的寄存器结构及地址分配
表1是工作在BASIC CAN模式下的SJA1000的寄存器结构及地址分配表。CAN控制器工作模式的设定、数据的发送和接收等都是通过这些寄存器来实现的。时钟分频寄存器OCR用于设定SJA1000工作于BASIC CAN还是PeliCAN,还用于CLKOUT引脚输出时钟频率的设定,在上电初始化控制器时必须首先设定;在工作模式下,控制寄存器CR用于控制CAN控制器的行为,可读可写;命令寄存器CMR只能写;状态寄存器SR只能读;而IR、ACR、AMR、BTR0、BTR1、OCR在工作模式下读写无意义。通常,在系统初始化时,先使CR.0=1,SJA1000进入复位模式。在此模式下IR、ACR、AMR、BTR0、BTR1及OCR均可读可写,此时设置相应的初值。当退出复位模式时,SJA1000即按复位时设定的相应情况工作于工作模式,除非再次使芯片复位,否则上次设定的值不变。当需要发送信息时,若发送缓冲器空闲,由CPU控制信息写入TXB,再由CMR控制发送;当接收缓冲器RXFIFO未满且接收信息通过了ASP,则接收到的信息被写入RXFIFO。可通过两种方法读取接收到的信息。一种方法是,在中断被使能的情况下,由SJA1000向CPU发中断信号,CPU通过SR及IR可以识别该中断,并读取数据释放接收缓冲器;另一种方法是直接读取SR,查询RXFIFO的状态,当有信息接收时,读取该信息并释放接收缓冲器。当接收缓冲器中有多条信息时,当前的信息被读取后,接收缓冲器有效信号会再次有效,通过中断方式或查询方式可以再次读取信息,直到RXFIFO中的信息被全部读出为止。当RXFIFO已满,如还有信息被接收,此接收信息不被保存,且发出相应的缓冲器溢出信号供CPU读取处理。


4 CAN协议通信格式
CAN协议通信格式中有四种帧格式:数据帧、远程帧、出错帧和超载帧。其中数据帧和远程帧的发送需要在CPU控制下进行,而出错帧和超载帧的发送则是在错误发生或超载发生时自动进行的。因此人们更关心前两个帧的结构。数据帧结构如图2所示。

一个完整的数据帧格式,除仲裁场、控制场、数据场外都是CAN控制器发送数据时自动加上去的,而仲裁场、控制场、数据场则必须由CPU控制给出。用SJA1000时,写出发送缓冲器的TXID0、TXID1即设定了相应的仲裁场和控制场。TXID0即为仲裁场的高8位,TXID1的高3位为仲裁场的低3位,仲裁场共11位。TXID1的第5位为RTR位,即远程请求位,在数据帧中为0;TXID1低四位标示数据场所含字节数的多少,称为DLC。RTR与DLC共同构成控制场。发送的数据组成数据场,最多不超过8个字节。远程帧与数据帧的形式差别在于没有数据场。除此形式上的差别外,在远程帧中RTR位须置1,表示请求数据源节点向它的目的节点(即发送远程帧的节点)发送数据。源节点接收到该帧后,把要发送数据用数据帧发给目的节点,完成数据请求。CRC场与ACK场都是在低层次上为提高传输的可靠性而自动进行的。任何帧与帧之间是帧间空间。
5 设计实例
5.1 整体设计思路
这里用SJA1000与AT89C51芯片设计一种具
- 数字信号处理(DSP)应用系统中的低功耗设计(05-02)
- SHARC引领第四代通用DSP高端应用潮流(09-27)
- 在应用可编程测控网络设计(03-15)
- 基于dsPIC33F系列单片机的应用程序升级方法(04-03)
- 采用混合时钟模式提高Linux时钟精度的方法(05-10)
- MSP430低功耗原理及其在海温测量中的应用(06-06)
