基于OMAP-L138 DSP和Spartan-6的SDR系统实现
用以将数据从DSP存储器传送到DAC。FPGA则起到中间调解作用,负责向DAC和uPP提供可编程时钟,用于设置发送采样率。
接收处理链
接收流程连续运行。ADC样本被同步送入FPGA——通过将输入样本与正交正弦和余弦波形相乘并积分,对数据进行基带处理,从而以较低的数据速率向DSP提供同相和正交样本。这些样本被uPP DMA引擎以DMA方式送入DSP存储器,再由DSP处理剩余的扩频解调处理步骤。一旦信号被解调,得到的数据包将使用TI的DSPLink处理器之间通信库传送回ARM处理器。ARM软件接收解码数据,并通过命令接口将数据呈现给用户。
使用FPGA执行接收器初始基带处理能够释放足够的DSP处理能力,从而轻松完成剩余的解调和解码工作。如果系统中的输入信号采样率显著低于60MHz,则DSP可不借助FPGA的力量,独自执行基带处理任务。
该系统的初始工作使用了一个低频段(几十或几百kHz)的载频。在初始实施过程中,FPGA仅负责将数据发送至DSP,由DSP执行所有的解调功能。这种方式很奏效,但是无法达到更高采样率应用的要求。通过在FPGA中实施基带处理,我们可以在全采样率下进行数字基带处理和滤波,从而改善系统的噪声性能:这在欠采样下是无法做到的。
本文小结
该项目实现的原型系统已经为多个应用实施过概念验证。与理想扩频无线电的理论性能相比,该系统的性能非常优异。TI OMAP-L138 DSP+ARM处理器与FPGA的结合,实现了具有出色性能的高性价比解决方案。将DSP的部分处理负载分配给FPGA,使系统可以使用低成本、低功耗的处理器来构建,而不是由GHz级的DSP处理所有工作。uPP接口支持简单的FPGA接口功能,并且与其他可用的DSP接口相比,具有明显的性能优势。使用uPP中的DMA进行数据传送,可以进一步释放DSP资源,将DSP周期用于更加重要的工作。
在OMAP-L1x平台中加入ARM处理器后,便可使用嵌入式Linux提供通信基础设施,来管理系统中的用户界面和所有的内务处理功能。此外,使用SD卡、USB驱动器或者以太网连接,可以对系统软件(ARM、DSP和FPGA)进行现场升级。因此,SDR系统的灵活性可以充分满足处理算法的发展要求。
系统 实现 SDR Spartan-6 OMAP-L138 DSP 基于 相关文章:
- Linux嵌入式系统开发平台选型探讨(11-09)
- VxWorks实时操作系统下MPC8260ATM驱动的实现(11-11)
- VXWORKS内核分析(11-11)
- Linux内核解读入门(11-09)
- linux文件系统基础(02-09)
- 基于Winodws CE的嵌入式网络监控系统的设计与实现(03-05)
