4G系统中多天线技术
指向不同方向的波速,第二级对一级输出进行自适应加权调整并合成,此方案不是对全部阵元都从整体最优计算加权系数,而是只对部分阵元作自适应处理,其特点是计算量小,收敛快,并且有良好的波束保形性能。 4. 智能天线的优点及应用 智能天线能够获得更大的天线覆盖范围;有效减少多径衰落的影响,提高通信质量,并能够减少对其它用户的干扰;增加频谱效率和信道容量;动态信道分配;实现移动台定位;提高通信安全性。 目前TD-SCDMA(时分同步码分多址)是世界上惟一采用智能天线的第三代移动通信系统,国际上已经把智能天线技术作B3G移动通信发展的主要方向之一。 三、MIMO技术 移动通信环境中存在多个散射体、反射体,在无线通信链路的发射与接收端存在多条传播路径,多径传播对通信的有效性与可靠性造成了严重的影响。研究表明,可以利用多径引起的接收信号的某些空间特性实现接收端的信号分离。多输入一多输出(MIMO)技术在通信链路两端均使用多个天线,发端将信源输出的串行码流转成多路并行子码流,分别通过不同的发射天线阵元同频、同时发送,接收方则利用多径引起的多个接收天线上信号的不相关性从混合信号中分离估计出原始子码流(见图4)这相当于频带资源重复利用,可以在原有的频带内实现高速率的信息传输,使频谱利用率和链路可靠性极大的提高。MIMO系统提供分集增益(diversitygain)和复用增益(multiplexinggain)。 图4 MIMO无线传输系统 1. 分集增益 MIMO系统中发射端和接收端结合,得到一个大的分集阶数(diversityorder)。假设发射天线MT,接收天线数MR,最大链路数为MT×MR;如果所有这些链路具有相互独立的衰落,则得到MT×MR阶分集。 2. 复用增益 空分复用利用传播环境中丰富的多径分量,多个数据通道共用一个频率带宽,从而使信道容量线性(与天线数成正比)增加,而不需要额外带宽或功率消耗。 输入数据流经过串并变换后形成MT路较低速率的数据流,并在同一时刻经过相同的频带从MT根发射天线发射出去。由于多径传播,每根接收天线所观察到的是所有发射信号的叠加,而每根发射天线在接收端具有不同的空间信号,接端利用这些信号的差异分离出独立的数据流,并将它们合并恢复出原始信号(见图5)。为获得复用增益所付出的代价是使用天线而带来的系统硬件复杂度和成本的增加。常见的几种线性和非线性接收机有迫零接收机,V-BLAST接收机,最小均方误差接收机和最大似然接收机等. 图5 空分复用系统 3. MIMO与空时编码 与MIMO技术密切相关的另一种技术是空时码,空时码是适合于多天线阵信道的一种编码方案。它综合了空间分集和时间分集的优点,同时提供分集增益和编码增益。现有的研究表明,空时码能够获得远远高于传统单天线系统的频带利用率。按照空时码适用信道环境的不同,可以将已有的空时编码分成两大类:一类要求接收端能够准确地估计信道特性,如分层空时码、网格空时码和分组空时码;另一类不要求接收端进行信道估计,如酉空时码和差分空时码。 4. MIMO和OFDM">OFDM OFDM">OFDM技术是一种特殊的多载波传输方案,其多载波之间相互正交,可以高效利用频谱资源,同时OFDM">OFDM将总带宽分割为若干个窄带子载波,可以有效抵抗频率选择性衰落。与MIMO相结合的MIMO-OFDM">OFDM系统既有很高的传输效率,又通过分集达到很强的可靠性,从而成为第四代移动通信系统的研究热点。 四、结束语 传统的智能天线终端只在发射端或接收端配备多个天线元,通常是在基站,因为额外的开销和空间与在移动台相比更容易得到满足。与智能天线系统相比,MIMO系统在发射端和接收端都为多天线,其潜力远远超过了传统的智能天线,可以使无线链路的容量有惊人的提高。MIMO信道的可分离性依赖于丰富多径的存在,使信道具有空间选择性。也就是说MIMO充分利用了多径。与之相反,一些智能天线在视距(LOS)或近似视距的情况下性能更好,也就是说在通过减少多径分量来获得好的工作性能;另一些基于分集的智能天线技术可以在非视距条件下表现的良好的性能,但它们也是在努力消除多径而不是利用多径。多天线系统凭借其在提高频谱效率方面的卓越表现,在4G中将发挥重要的作用。
- WiMAX技术的多天线技术(08-09)
- TD-LTE网络中的多天线技术(图)(02-09)