微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于SOPC的M8051嵌入式调试器设计

基于SOPC的M8051嵌入式调试器设计

时间:08-08 来源:互联网 点击:

以系统运行控制操作中的Halt8051操作为例,由OCI的结构可知,该操作由向OCI模块的IR中写入0x69来实现。在上位机中该操作的调试协议数据为0x0069。
调试器固件在接收到来自上位机的调试协议数据后,将0x00和0x69分别写入调试命令解析模块的命令寄存器和数据寄存器。调试命令解析模块将该调试协议数据解析为向OCI的IR中写入0x69,即JTAG_CMD=IR,JTAG_Din=0x69;再由JTAG边界扫描时序生成模块产牛向IR写入0x69的JTAG时序。
与传统的软件方法相比,由FPGA硬件实现调试命令解析和JTAG边界扫描时序牛成,不但减轻了调试器上的8051处理器的负担,而且有效提高了JTAG调试速度。
2.3 调试系统的软件设计
本文中的软件设计分为两部分:PC端调试软件和调试器固件。两部分通过USB接口进行交互。具体的软件构架如图6所示。

2.3.1 PC端软件设计
PC端调试软件由Keil C51编译器、AGDI调试接口函数和USB驱动程序三部分组成。通用的AGDI调试接口函数是独立于处理器体系结构的函数集,它将上层调试操作分别转化为独立于处理器的调试命令。一般来说,AGDI捌试接口函数实现的调试操作有以下儿类:系统运行控制、寄存器读写、存储器读写操作以及断点操作。
AGDI调试接口函数设计是PC端软件设计的重点。主要工作是在通用AGDI接口函数的基础上,实现针对M8051处理器的调试接口,将来自编译器的调试操作转换为针对M8051的调试协议数据。本文中调试协议数据采用调试命令加上调试数据的形式。以系统运行控制操作中的Halt80 51操作为例:AGDI调试接口函数将Halt8051操作转化为基于M8051处理器的调试协议数据0x0069,即调试命令0x00和调试数据0x69。最后由USB驱动层将调试协议数据0x0069打包发送给调试器。
2.3.2 调试器固件设计
调试器固件的功能分成两个方面:一方面是下行数据发送,在完成USB设备的枚举过程后,接收USB接口的调试协议数据,解析得到的调试命令和调试数据,再将调试命令和调试数据分别写入JTAG控制器模块的命令寄存器和数据寄存器;另一方面监控目标机的返回信息,并将返回信息通过USB接口发送给调试主机。
本文中的软件部分主要负责调试协议数据的生成和传送,具体的调试命令解析和JTAG边界扫描时序的产生,全部由硬件实现,保证了调试效率的最大化。

3 M8051调试系统的测试
3.1 测试环境
测试环境包括软件环境和硬件环境。软件环境包括Kell C51编译器和Xilinx ISE Design Suite;硬件环境包括PC机、本文开发的调试器电路板和基于M8051处理器的目标板。测试环境如图7所示。

3.2 调试系统的功能测试
功能测试的项目主要包括:涮试开始/停止、单步运行、断点、读写寄存器、渎写存储器等。经测试,以上调试操作稳定可靠。以断点操作为例,断点操作是软件调试过程中最重要的手段之一,本文断点功能经测试完全可靠。测试结果如图8所示。CPU从PC指针为零处开始执行,到达断点地址0x0006处停止执行,并将处理器的最新状态更新到用户界面上。

3.3 调试器的主要参数
本调试器采用USB2.0全速(12 Mbps)接口,调试器内部M8051处理器主频为48 MHz,JTAG协议数据收发速度达到8 Mbps。采用Spartan-6 xc6slx16 FPGA芯片实现,FPGA资源使用情况如下:可配置逻辑单元Slice1439个,占该资源总数的63%;嵌入式存储模块BLOCKRAM 144 KB,占该资源总数的14%;I/O接口数24个,占该资源总数的13%;时钟管理模块DCM 1个,占该资源总数的25%。

结语
本文给出的基于USB接口、以单一FPGA芯片实现的M8051嵌入式渊试器系统,不仅突破了传统调试器的速度瓶颈,而且大大简化了系统的复杂度。经测试,本调试器系统能够高效地完成M8051处理器的软件开发,是一种易于被开发者接受的高性价比、实用的调试器方案。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top