单片机键盘输入编程
图2为行列式键盘输入示意图,列线接P1.0~P1.3,行线接P1.4~P1.7。行列式键盘输入适合于按键输入多的情况,如有16个按键输入,用简单按键输入用要占用2个输入口(共16位),而使用行列式键盘输入只需占用一个输入口(8位)。但行列式键盘输入软件编写较复杂,对初学者而言有一定的难度。
以上略谈了一下按键输入的情况。在很多状态下,按键输入的值要同时要在LED数码管上显示出来。如一个按键设计为输入递增(加法)键,可以设计成每点按一下,数值递增加1,同时在LED数码管上显示出来;也可设计成持续按下时,数值以一定时间间隔(如0.3秒)累加。但是当欲输入值较大时(如三位LED数码管作输入显示时的输入值最大为999),则可能按下键的时间太长(最长达300秒),看来这种方式只适用于一位或至多两位数值(最大99)的输入。当然你也可多设几个键,每个键只负责一位数值的输入,但这样会占用较多的口线,浪费宝贵的硬件资源。
大家可能见到过,一些进口的温度控制器(如日本RKC INSTRUMENT INC. 生产的REX_C700温控器)的面板设计为:温度测量值用4位LED数码管显示,输入设定值显示也用4位LED数码管,输入按键只有4个,一个为“模式设定键”,一个为“左移键”,另两个为“加法键”、“减法键”。欲输入设定值(温控值)时,按一下“模式设定键”,程序进入设定状态,此时输入设定值显示的4位LED数码管中,个位显示最亮(稳定显示),而十、百、千位显示较暗(有闪烁感),说明可对个位进行输入。按下“加法键”或“减法键”,即可输入个位数的值;点按一下“左移键”,变为十位显示最亮,而个、百、千位显示较暗,说明可对十位进行输入。按下“加法键”或“减法键”,即可输入十位数的值;……这样可完成4位数的输入。完成输入后,再按一下“模式设定键”,程序即退出设定状态,进入工作运行。用这种输入方法,不仅输入4位数用4个键即可,再多位(5位至24位)的输入也用这4个键就够了。
大家了解了这种新颖的按键输入方式后,一定很感兴趣,也想掌握设计方法。为了便于大家理解,这里结合笔者设计的一款“节能时控器”,详细进行讲解。“节能时控器”用于定时控制大功率电器工作,因现采用分时计费方法,可起到节约开支的作用,对工业生产成效显著。
图3为“节能时控器”硬件构成原理图。“节能时控器”共有4个输入按键:set--模式设定键,left--左移键,up—加法键,on/off--定时1、2启动/关闭键。单片机IC1(AT89C2051)只有15条I/O线,由于受I/O线数量限制,因此P1口中的P1.0~P1.3既作为驱动4位LED数码管的数据输出一部分,同时也用作按键的输入。无疑,这种方式大大节约了硬件的I/O线,但也给编程者提出了更高的技术要求。限于篇幅,我们只对要详解的按键输入程序进行分析,其它部分只略作介绍。如读者需“节能时控器”详细的源程序,可以Email:xuyuandz@163.com与作者联系。
图4为主程序状态流程图。可见主程序只负责进行走时或调整时间的运算及显示,而判断按键输入则放在T1定时中断(10mS)服务子程序中。T0作为走时的基准被设置为100mS定时中断。这种设计的优点是大大简化了主程序设计,并且CPU会定时关心键盘,只要定时中断时间足够短(如为几十mS),就不会漏掉每一次的按键输入。
下面为判断按键输入的T1定时中断服务子程序,序号为解释方便而加。
/*10mS定时中断服务子函数*/
序号 1:void zd1(void) interrupt 3
2:{
3:uchar i,j;i=P1;j=P3;
4:TH1=-(5000/256);
5:TL1=-(5000%256);
6:if(m==1)n++;
7:if(n>=30){n=0;m=0;}
8:P3_7=0;
9:P1=0xff;
10:if(P1!=0xff)
11:{
12:if(n==0)m=1;
13:{if(n==1)
14:{
15:if(P1_0==0){set++;left=0;}
16:if(set>=4)set=0;
17:if(set==1)flag=0x55;
18:if(P1_1==0)left++;
19:if(left>=4)left=0;
20:if(P1_2==0){up++;
21:switch(left)
22:{
23:case 0:{if(up>=10)up=0;}break;
24:case 1:{if(up>=6)up=0;}break;
25:case 2:{if(up>=10)up=0;}break;
26:case 3:{if(up>=3)up=0;}break;
27:default:break;
28:}
29:}
30:if(P1_2==0){
31:switch(set)
32:{case 0:break;
33:case 1:x[left]=up;break;
34:case 2
- FPGA的DSP性能揭秘(06-16)
- 基于单片机通用引脚的软件UART设计(10-16)
- 分时操作系统思想在单片机中的具体应用 (10-30)
- 基于AT89C51+DSP的双CPU伺服运动控制器的研究(05-26)
- 关于RTX51 TINY的分析与探讨(05-30)
- 基于MC9S12DGl28单片机的智能寻迹车设计(04-03)