微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗28闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻鐔兼⒒鐎靛壊妲紒鐐劤椤兘寮婚敐澶婄疀妞ゆ帊鐒﹂崕鎾绘⒑閹肩偛濡奸柛濠傛健瀵鈽夐姀鈺傛櫇闂佹寧绻傚Λ娑⑺囬妷褏纾藉ù锝呮惈灏忛梺鍛婎殕婵炲﹤顕f繝姘亜闁惧繐婀遍敍婊堟⒑闂堟稓绠冲┑顔炬暬閹﹢宕奸姀銏紲闂佺粯鍔﹂崜娆撳礉閵堝棎浜滄い鎾跺Т閸樺鈧鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�
首页 > 硬件设计 > 嵌入式设计 > 基于CAN总线的分布式电动型AMT系统

基于CAN总线的分布式电动型AMT系统

时间:10-24 来源:互联网 点击:

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
图3 AMT 控制节点结构原理

采用直流电机是由于其具有良好的线性调速特性,简单的控制性能,较高的效率,优异的动态特性,而且用在汽车上有独特的优势:可以直接利用汽车低压蓄电池组供电。该系统综合ECU 下达的命令和自身采样的相关信息后,采取相应的措施控制油门电机、离合器电机和换档电机工作,完成换档,操纵离合与油门的功能。由于受到换档操纵结构的限制,AMT 的ECU 通过上位机根据工况给出的调控指令,只能按Ⅰ/Ⅱ/Ⅲ/Ⅳ?的档位顺序,依次、不间断地实施从低到高、从高到低的往复变化,无法实现跳档工作。

对电机的驱动采用场效应功率MOS 管,通过PWM 波对MOSFET 的开关控制,达到控制电动机电枢电压,实现调速目的。选用Infineon 公司生产的一款用于驱动大功率直流电机的智能型H 桥驱动芯片B TS7810 K,简化了设计过程,同时提高了可靠性。该芯片集成了4 个D2MOS 开关管,即可以组成为桥式电路也可以当作4 个独立的开关管使用;具有低的导通电阻RDS(ON) ,在25 ℃的结温度下,高侧2 个开关低至26 mΩ ,低侧2 个开关低至14 mΩ;每个开关管可以承受高达42 A 的峰值电流(在25 ℃的结温度下) ,并且具有非常低的静态漏电流(4μA) ;具有动力电源正负极短路保护功能;能够承受40 V 的直流电压;提供过热状态输出信号和过热保护功能;提供欠压检测功能;具有钳位二极管保护功能;高侧开关负载开路检测功能等。而且该芯片的工作温度范围为- 40~150 ℃,适合汽车运用环境。

由于采用了分布式控制系统,AMT 控制节点对电机速度和转角位置的控制精度直接影响到了AMT 的性能。为了对电机进行精确的控制,必须采用负反馈闭环控制系统。整个闭环控制系统是由被控对象(这里是直流电机驱动的机构负载) 和控制器2 部分组成的。控制器以误差/ 偏差作为控制器输入信号,按照某种控制规律对该信号作出运算,然后向被控对象发出控制信号,使得误差/ 偏差得到消除或者是减小,从而达到预期的控制目的。目前,在广泛使用的控制器中,常常采用比例、微分和积分等基本控制规律,或用这些基本控制规律的适当组合,比如PID 控制器,对被控对象进行有效控制。很多智能控制系统也往往是在这些控制规律的基础上发展起来的。

通过建立一个以PID 控制规律对直流减速电机进行转角位置控制的系统,建立其数学传递函数,进行仿真分析。然后运用单片机搭建数字控制系统,编写数字PID 控制程序,经过调试,整定PID 参数,以获得较好的输出动态性能和稳态精度。

采用M68HC908GZ16 芯片作为数字控制器,利用其内部的10 位A/ D 转换器,编写了直流减速电机的数字PID 控制程序。该数字PID 控制器的控制输出量为电机的电枢电压,反馈信号是蜗轮蜗杆直流减速电机输出轴的角位移的A/ D 采样值。

经过多次的调试、参数整定,得到了较好的PID控制效果。图4 是基于M68HC908GZ16 芯片的控制节点控制换档机构,针对实际阶跃输入的响应图,其中采样周期T = 10 ms。从图中可以看出,整个控制节点构成了一个完整的反馈控制系统,可以准确地将CAN 总线上输入作为给定量,快速准确地调整换档机构到达指定位置。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
图4 AMT 控制节点阶跃响应控制效果

3 结束语

基于CAN 总线的分布式控制系统的开发工作,已被初步证明在技术上较集中控制是更加可行有效的,同时也是很经济的。AMT 控制采用基于CAN 总线的分布式控制系统的优点:

a. 有效减少了电机驱动电流在线路上的铜损,减少了故障发生的概率,提高系统的可靠性。
b. 利用CAN 总线实现信号传输全数字化,缩短了模拟信号传输距离,保证系统控制的准确性。
c. 该系统的控制单元全部分散到现场,控制回路由现场控制器实现,提高了控制的动态性能。
d. 现场总线中允许ECU 根据车况用数字通讯的方式对现场控制节点进行操作和调整,易于实现优化控制策略。

综上所述,基于CAN 总线的分布式全电动型结构非常适合于公交大客车AMT 系统。该系统利用CAN 作为汽车计算机网络总线,使AMT 各控制单元能够共享所有信息和资源,达到简化布线、提高系统可靠性和维护性、降低成本的目的。按照以上思路解决了全电动AMT 系统设计的技术难题,结合微电子技术,在总体传动结构不变的情况下通过加装微机控制的自动操纵系统来实现换挡的自动化。既保留了原齿轮变速器传动效率高、结构简单的长处,又以较小的代价具有了液力自动变速器的自动换档性能。

参考文献:
[1 ] 刘岩,丁玉兰. 电控机械式自动变速器控制系统的研究[J ] . 重型汽车,2001 , (1) :12 - 13.
[2 ] 卢永生. AMT 自动换档变速器在城市客车上的应用[J ] . 客车技术与研究,2006 ,28 (1) :41 - 43.
[3 ] 卢新田, 侯国政. AMT 控制系统结构及国外主要AMT 产品介绍[J ] . 汽车技术,2004 , (5) :19 - 22.
[4 ] 侯培国,韩向芹. 电控机械式自动变速器控制系统的研究[J ] . 传感技术学报,2005 ,18 (2) :296 - 299.
[5 ] 刘海鸥,陈慧岩,金亚英,等. 液压式离合器操纵机构在AMT 车辆中的控制研究[J ] . 液压与气动,2005 , (10) : 18 - 20.
[6 ] 任玉平,葛安林. 全电式AMT 选换挡系统模糊控制方法[J ] . 汽车技术,2004 , (8) :11 - 14.
[7 ] 黄向东,汪胜勇,赵克刚,等. 基于CAN 总线的HEV集散控制系统的通信[J ] . 华南理工大学学报(自然科学版) ,2004 ,32 (5) :88 - 91.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top