立体声信号相位差电平差测试仪
图4中,uA、uB是L信号和R信号,是正弦波;uC、uD是L、R信号经电压比较器整形后的方波,uE是2个方波相与后得到的矩形波,D是占空比。用过零鉴相法,测量两个矩形波信号的占空比。过零鉴相法是:两个正弦波,频率相同,让其经过鉴相网络后,变为方波。其前沿对应于正弦波的正向过零点,后沿对应于正弦波的负向过零点。再将两个方波送入到触发器的复位端和置位端,被测量方波的前沿将其复位,基准方波的前沿将触发器复位。触发器输出的脉冲宽度即是两个信号过零点的时间差,即图4中的占空比D。
再将uE放大后,送入占空比检测电路,在输出端F得到一个直流电压,数值是0~100 mV,这个直流信号即代表占空比D,是反映相位差的一个量,D从[(0~100%)×T]变化,其中T为A点(或B点)信号的周期。如F点输出信号为10 mV时,D=10%×T,则L(A点信号)和R(B点信号)的相位差△φ=180°-10%x360°。当D=0时,R、L信号的相位差为180°,即反相,这时立体声信号严重失真。
2.2 电平差检测模块
图5所示为电平差检测电路原理图。因左右声道电平差检测电路图完全一样,所以图5是左声道电平差检测电路原理图。电平差检测电路由衰减器、交流直流变换电路和放大器三级组成,其中IC7 NE5532及其周围器件组成衰减器,将输入L信号电压的有效值衰减到200 mV。IC 8AD736及其周围器件组成交流变直流电路。IC9 NE5532及其周围器件组成放大器,将信号放大后送入单片机的A/D端。为了提高精度和减小误差,前级衰减器和后级放大器设计成自动校零型电路。
AD736是专用的单片精密真有效值A/D转换器,内部经过激光修正,具有频率特性好、速度快、灵敏度高、输入阻抗高、输出阻抗低、电源范围宽、功耗小等特点,其测量误差小于±0.3%。C3是输入耦合电容,一般取5~25μF。C4是输出滤波电容,一般取5~15μF,其数值会影响到输出电压有效值的精度,在低频端更为重要。C5一般取30~40μF,其数值大小会影响到被测电压的波峰因数Kp,Kp是被测电压的峰值与真有效值之比。
3 系统软件设计
用C8051F020单片机,采用C语言编程,由主程序和子程序两部分组成。主程序完成系统初始化、参数设置和各子程序的调用。子程序主要包括:工作模式选择模块、参数设置及计算模块、相位差计算模块、电平差计算模块、A/D模块、键盘扫描模块和显示模块等。如图6所示,是主程序流程图。
如表1所示,是相位差电平差测试数据。
由表1的测试数据可知,相位差的绝对误差小于0.7°,电平差的绝对误差小于3 mV(当△Ui=10 mV),测试精度较高。
5 结论
随着电子技术的迅速发展,人们的生活质量不断提高,同时对广播和音乐放音也提出了更高的要求。只有准确地测量出左右声道的相位差电平差,再用补偿电路进行修正,才能保证播音和放音质量,满足人们欣赏到音质优美的广播和音乐的需求。
本设计为高质量立体声广播和研发制造高质量音响设备奠定了基础,还可推广到其它应用领域,用于检测和调整两路信号平衡,如飞机平衡、运动平衡调整等。
- 基于FPGA的同频信号相位差测量算法的实现(02-27)
- 汽车电控汽油机喷油脉宽处理系统设计(11-09)
- 基于测试仪器技术及UML的模型验证集成测试(01-20)
- 基于DSP的继电保护测试仪信号采集系统硬件设计(03-20)
- 基于DSP的继电保护测试仪信号采集装置硬件系统设计(05-01)
- 小窍门:如何轻松设计一款光污染测试仪(03-18)