kinetis的UART串口(DMA模式)
前面的例子中,串口的收发采用中断模式,虽然在一定程度上解放了CPU,但每个字节都要中断一次,在115200波特率下,约8.7uS就要中断一次,CPU仍然很累。直接存储器访问(DMA)方式可以进一步解放CPU,本例采用DAM方式实现每次100字节数据发送与接收。DMA处理发送是最有效的方法,因为程序明确知道有多少数据要发送,直接将数据存放数组的首地址和长度交给DMA即可由DAM连续发完这些数据,如果需要可以设置让DMA发完后产生中断。对于接收,用DMA的问题在于不知道接收多少个数,无法在收到数据后通知CPU。一般采用这样的做法:用DMA收下所有数据放到环形缓冲区里,但不产生中断。这样虽不能通知CPU何时收到了数据,但确可以收下所有数据。每隔一段时间CPU查询该缓冲区,发现有数据就处理。这样虽响应的及时性差些,但一般场合都是可以接受的。
要使用UART的DMA方式,需做下面3件事情:
1、UART5_C2寄存器的发送、接收中断使能,接收使能。
2、UART5_C5寄存器的DMA收和DMA发使能。
3、设置DMAMUX,将相应请求源(中断源)映射到相应DMA通道,并使能相应通道。请求源编号见表3-24。
4、设置DMA控制器,主要是TCD的设置,包括源、目的地址、传输长度、地址递增等。
5、如果需要DMA传输完成产生中断,则要NVICISER寄存器使能DMA对应中断,中断向量表填入中断服务程序入口。
6、想发数据的时候设置UART5_C2的发送使能,会立即因发送数据寄存器空而产生DMA请求。
示例代码用通道0处理发送,完成后产生中断,中断服务程序会再启动发送;通道1处理数据接收,不产生中断。因使用了回环,发送的数据都被自身接收到了,可以看出发送、接收的过程没有CPU的干预,发送完100字节(实际可以很长)才产生一次中断,在此期间MCU可以做各种事情。
下面是完整代码:
/*
* main implementation: use this 'C' sample to create your own application
*
*/
#define GPIO_PIN_MASK 0x3C000000
#define GPIO_PIN(x) ((1
#include
#include derivative.h /* include peripheral declarations */
struct _uart_buf
{
int index;
char buf[100];
} uart_tx,uart_rx;
void MCG_Init()
{
SIM_SCGC6 |= 0x20000000; //SIM_SCGC6: RTC=1
if ((RTC_CR RTC_CR_OSCE_MASK) == 0u)//Only if the OSCILLATOR is not already enabled
{
RTC_CR = ~0x3C00; //RTC_CR: SC2P=0,SC4P=0,SC8P=0,SC16P=0
RTC_CR |= 0x0100; //RTC_CR: OSCE=1
RTC_CR = ~0x0200; //RTC_CR: CLKO=0
}
/* System clock initialization */
/* SIM_CLKdiv1: OUTdiv1=0,OUTdiv2=1,OUTdiv3=1,OUTdiv4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM_CLKdiv1 = (uint32_t)0x01130000UL; /* Update system prescalers */
/* SIM_SOPT2: PLLFLLSEL=0 */
SIM_SOPT2 = (uint32_t)~0x00010000UL; /* Select FLL as a clock source for various peripherals */
/* SIM_SOPT1: OSC32KSEL=0 */
SIM_SOPT1 = (uint32_t)~0x00080000UL; /* System oscillator drives 32 kHz clock for various peripherals */
/* Switch to FEE Mode */
SIM_SOPT2 |= (uint32_t)0x01UL;// SIM_SOPT2: MCGCLKSEL=1 0-System oscillator (OSCCLK), 1-32 kHz RTC oscillator
MCG_C2 = (uint8_t)0x00U; // MCG_C2: ??=0,??=0,RANGE=0,HGO=0,EREFS=0,LP=0,IRCS=0
MCG_C1 = (uint8_t)0x02U; // MCG_C1: CLKS=0,FRdiv=0,IREFS=0,IRCLKEN=1,IREFSTEN=0
MCG_C4 |= 0xE0; //MCG_C4: DMX32=1,DRST_DRS=3
MCG_C5 = 0x00; // MCG_C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRdiv=0
MCG_C6 = 0x00;// MCG_C6: LOLIE=0,PLLS=0,CME=0,Vdiv=0
while((MCG_S MCG_S_IREFST_MASK) != 0x00U) //Check that the source of the FLL reference clock is the external reference clock.
{
}
while((MCG_S 0x0CU) != 0x00U) // Wait until output of the FLL is selected
{
}
}
void UART_Init()
{
// SIM_SCGC1: UART5=1
SIM_SCGC1 |= (uint32_t)0x0800UL;
// SIM_SCGC5: PORTE=1
SIM_SCGC5 |= (uint32_t)0x2000UL;
// PORTE_PCR9: ISF=0,MUX=3 做UART
PORTE_PCR9 = (uint32_t)((PORTE_PCR9 (uint32_t)~0x01000400UL) | (uint32_t)0x0300UL);
// PORTE_PCR8: ISF=0,MUX=3 做UART
PORTE_PCR8 = (uint32_t)((PORTE_PCR8 (uint32_t)~0x01000400UL) | (uint32_t)0x0300UL);
UART5_C4 = 0x14; //波特率微调
UART5_BDH = (312>>8) 0x1F;//设波特率9600bps
UART5_BDL = 3120xFF;
UART5_C2 = (17)|(15)|(12);//允许收、发中断,
- 如何缩短嵌入式系统开发之路(04-14)
- 对Linux内核中进程上下文和中断上下文的理解(04-27)
- 嵌入式应用中的四类1-Wire主机电路设计(08-03)
- 基于C/S架构的通用计算机在线考试系统的实现(08-12)
- 嵌入式WEB服务器在太阳能发电站监测系统中的设计应用(09-08)
- 嵌入式系统教学模式探讨(06-06)