基于单片机高精度工程超声波测距系统研究
卡尔公司推出的S12控制器中的一款16位微控制器。其集成度高,片内资源丰富,接口模块包括SPI、SCI、I2C、A/D、PWM等,在FLASH存储控制及加密方面有较强的功能。
MC9S12DG128B微控制器采用增强型16位S12 CPU,片内总线时钟频率最高可达25MHz;片内资源包括8kB RAM、128kB FLASH、2kB EEPROM、SCI、SPI及PWM串行接口模块;PWM模块可设置成4路8位或2路16位,可宽范围选择时钟频率;它还提供2个8路10位精度A/D转换器、控制器局域网CAN和增强型捕捉定时器,并支持背景调试模式(BDM)。
超声波的发射电路
超声波发射电路一般由超声波反射器T、40kHz的超音频振荡器、驱动(或激励)电路等组成,本设计利用门电路产生40kHz的超声波,组成的超声波发射电路见图2。
图中,与非门74LS00和LM386组成超声波发射电路,用74LS00构成多谐振荡器,通过调节20k的电位器,可产生超声波发射的40kHz信号,其中U3A为驱动器,电路振荡频率f≈1/2.2RC,单片机的控制信号由U2A输入。为增大超声波的发射频率,本设计利用了单运放LM386,发射距离可达4m。
超声波的接收电路
超声波接收电路如图3所示。接收头采用与发射头配对的超声波接收器R,将超声波调制脉冲变为交变电压信号。为了进行信号的整形,在设计中的CMOS电平的6非门芯片CD4069,可以减少电路的复杂程度,提高电路的带负载能力。整形后的信号由C1耦合给带有锁定环的音频译码集成块LM567的输入端3脚,当输入信号的幅度落在其中心频率上时,LM567的逻辑输出端8脚由高电平跃变为低电平。
DS18B20温度补偿电路
根据上文中式(2)可知,温度对声速的影响较大,若不进行补偿,将会带来测量误差,为了提高系统的测量精度,设计了温度补偿电路。系统采用数字温度传感器DS18B20来采集温度,DS18B20是美国DALLAS公司生产的1-wire总线串行数字温度传感器,它具有微型化、低功耗、抗干扰能力强、易于与微处理器接口等优点,适合于各种温度测控系统。它的测量温度范围为-55℃~+125℃,精度可达0.0675℃,最大转换时间为200ms。
数字式温度传感器和模拟温度传感器最大的区别是:将温度信号直接转化成数字信号,然后通过串行通信的方式输出。因此掌握DS18B20的通信协议是使用该器件的关键。该协议定义了几种信号类型:复位脉冲、应答脉冲时隙;写“0”、读“1”时隙,读“0”、读“1”时隙。初始化后,传感器输出两个字节的温度,进行数据处理后得到实际温度的值,利用式(2)可计算补偿声速。
液晶显示电路
字符点阵系列模块是一类专门用于显示字母、数字、符号等的点阵型显示模块。分4位和8位数据传输方式。它提供5×7点阵+光标和5×10点阵+光标的显示模式。提供显示数据缓冲区DDRAM、字符发生器CGROM和字符发生器CGRAM,可以使用CGRAM来存储自己定义的最多8个5×8点阵的图形字符的字模数据。它提供了丰富的指令设置:清显示,光标回原点,显示开/关,光标开/关,显示字符闪烁,光标移位,显示移位等。提供内部上电自动复位电路,当外加电源电压超过+4.5V时,自动对模块进行初始化
参考文献:
[1].LM92datasheethttp://www.dzsc.com/datasheet/LM92_452213.html.
[2].MC9S12DG128Bdatasheethttp://www.dzsc.com/datasheet/8B_1082342.html.
[3].DS18B20datasheethttp://www.dzsc.com/datasheet/DS18B20_819975.html.
[4].S12datasheethttp://www.dzsc.com/datasheet/S12_1619040.html.
[5].25MHzdatasheethttp://www.dzsc.com/datasheet/25MHz_1136611.html.
[6].74LS00datasheethttp://www.dzsc.com/datasheet/74LS00_798572.html.
[7].LM386datasheethttp://www.dzsc.com/datasheet/LM386_1054627.html.
[8].CD4069datasheethttp://www.dzsc.com/datasheet/CD4069_1054686.html.
[9].LM567datasheethttp://www.dzsc.com/datasheet/LM567_451669.html.
- FPGA的DSP性能揭秘(06-16)
- 基于单片机通用引脚的软件UART设计(10-16)
- 分时操作系统思想在单片机中的具体应用 (10-30)
- 基于AT89C51+DSP的双CPU伺服运动控制器的研究(05-26)
- 关于RTX51 TINY的分析与探讨(05-30)
- 基于MC9S12DGl28单片机的智能寻迹车设计(04-03)