电动汽车锂电池管理系统的研究与实现
二十世纪九十年代以来,锂离子电池的研究和生产都取得了重大的进展,在各个领域的应用也越来越广泛,近年来,锂离子电池也被研究人员用在电动车车上用作动力能源,成为电动车发展的一个新趋势。本章首先介绍和电池有关的基本概念,然后介绍其锂离子电池的特点和在电动车上的应用。
1.1充放电相关的基本概念
单体电池、单个电池和电池组:单体电池(Cell)是指电动势为2V(铅酸)或1.2V(镍氢)或3.6V(锂电池)左右的蓄电池,是组成单个电池的基本单元;几个单体电池封装组成单个电池,简称电池(Battery);电池组(Battery Pack)由若干个电池串联而成。
电池的容量:指一定的放电条件下可以从电池中获得的电量,一个电池有理论容量、实际容量、额定或公称容量和额定储备容量之分。用Ah(安时)数、mAh(毫安时)表示。
理论容量:理论容量是指假设活性物质全部参加电池的成流反应所给出的电量。它是根据活性物质的质量按照法拉弟定律计算得到的。为了比较不同系列的电池常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,常以Ah/Kg或Ah/L表示。
实际容量:实际容量是指在一定的放电条件下电池实际放出的容量,等于放电电流与放电时间的乘积。其值小于理论容量。计算方法是:
式中,C为实际容量,U为放电电压,I为放电电流,R为放电电阻,T为放电至终止电压的时间。
额定容量:额定容量是指设计和制造电池时,按国家或有关部门颁布标准规定或保证电池在一定放电条件下应该放出的最低限度的电量。如电动车规定为C/3放电率下放出的容量。
额定储备容量:国际电工学会(IEC)标准中规定汽车型蓄电池的容量用额定容量和储备容量表示均可。我国采用额定容量。指不分电池规格大小,一律以25A电流放电,到终止电压1.75V时的放电时间以分钟计。对规格不同的电池,规定不同的放电时间。
电池的能量是指在一定放电条件下,电池所能给出的电能,通常用Wh表示。
电池的功率是指电池在一定放电条件下,于单位时间内所给出能量的大小,单位为W(瓦)或KW。单位重量电池所能给出的功率称为比功率,单位W/kg或KW/kg.
充电状态SOC(State Of Charge):是描述电池荷电状态的一个重要参数,通常把在一定温度下电池充电到不能再吸收能量的状态理解为充电状态(SOC)为100%,而将电池再不能放出能量的状态理解为充电状态(SOC)0%.
式中Cr是剩余电量,CT为电池标称容量,即在规定电流和温度下处于理想状态时的所能放出的容量。Qe已用电量。ωi为不同放电电流和温度下的电量加权系数;
放电深度DOD(Depth Of Discharge):DOD = Qe/CT,DOD=1-SOC。
充电深度DOC(Depth Of Charge):电池可能放出的电量与实际电池容量的比。
DOC =(Ct-Qe)/Ct
式中Ct为实际电池容量,与放电电流和温度有关。DOC的值不仅与当前状态(SOC,温度,电流等)有关而且与将来电池的放电情况有关,因此DOC比SOC更能反映电池的实际情况。
充电接受能力(charge acceptance):在蓄电池充电时,用于进行充电反应的电流与总的充电电流之比。
即:a=IA/I
a——充电接受能力
IA——用于进行充电反应的那部分电流
I——总的充电电流
电池放电的电压拐点:通过电池的放电实验发现当电池的电压降到某点时,继续放电其电压会急剧下降,dv/dt数值很大,该点称为拐点。该点标示了电池电量已告罄,在拐点之下工作会造成对电池寿命的损害。如图1.1所示。电池的实际容量就是电压下降到拐点前所能释放的电量。
放电率:指用放电时间来表示的电池放电速率,用公式表示如下:放电电流电池容量
放电率( h)=电视容量/放电电流
老化:电池在开始使用初期的一段时间内,电池容量增加大约5%——15%。接下来的一段时间,电池容量基本不变。然后就开始逐渐减少。当电池容量衰减到额定容量80%时,就可以认为电池的寿命结束了。
充放电周期(Cycle):电池从充电开始到放电,再到下一次充电开始前称为一个充放电周期。
循环寿命(Cycle_Life):蓄电池在其实际容量降低至某一规定值之前所经历的充放电周期数。通常用来定义蓄电池的使用寿命。一般来讲,放电深度不同,电池寿命也不同。
恢复效应:电池在非连续放电的条件下,放电一段时间后,空载开路或从大电流变为小电流放电,电池内部的电荷将进行重新分布而至平衡,这时电池的端电压回升,在小电流放电下仍能放出一定电量。
自放电现象(Self-Discharge):电池在不工作时由于内部的电化学反应造成的电池容量下降的现象。通常与时间和环境温度有关,环境温度越高自放电现象越明显,所以在
- 基于μC/OS-II+CPLD的电动车电池管理系统设计(09-14)
- 基于DSP的电动汽车监控平台(08-18)
- 基于DSP的电动汽车CAN总线系统通讯技术设计(07-02)
- 利用仿真攻克汽车系统设计挑战(09-19)
- 前首富的伤感:卖电动汽车不容易(12-21)
- 电动汽车电池热管理Flowmaster和FloEFD应用(12-21)