基于单片机的强磁水处理仪设计
强磁水处理仪是吸收了国内外同类产品的优点研发而成的。该产品中心磁场强,对外界磁干扰小,对水的处理效果明显,是结构新颖独特的新一代最理想的防垢、除垢、杀菌、灭藻、防腐、防锈的水处理产品。可广泛运用于中央空调水循环系统,热交换系统,工业冷却水系统,家庭及公共建筑供暖供水管道,循环冷却系统,特种水产养殖场水质稳定等。
1、强磁水处理仪的控制要求
(1)对两个模拟信号进行采集:1个温度,(NTC电阻信号)1个压差(或两个压力,0~10V或4~20MA信号)。
(2)有四个输出控制点:4个开关输出(继电器,两个开关一组)。
(3)控制要求:实测压差值与设定压差值比较,超过设定压差值时,关闭1号开关,同时打开2号开关,延时30秒,打开1号,关闭2号;如此往复,系统带实时时钟。
(4)显示要求:液晶文本显示,显示测量温度、压差、设定压差、分别显示两组开关的状态,显示实时时钟。
(5)设计一组键盘:对温度、压力、日期和时间等的初值等进行设定。
2、系统设计
2.1系统框图
根据系统要求,设计了如图1所示硬件系统,系统由10部分组成。各部分的作用如下:
图1 系统结构图
2.1.1键盘电路
对系统进行各种参数的设置和对系统进行控制。
2.1.2时间电路
产生系统的日期和时间,如产生年、月、日、时、分、秒,并对这些参数进行存储。
2.1.3单片机
是系统的核心,用它对系统各部分进行管理控制。
2.1.4电源电路
对220V交流电压进行变压、稳压。产生系统所需的各种电压。
2.1.5显示电路
用来显示系统的工作情况,如温度、压力、日期和时间。
2.1.6A/D转换电路
将温度和压力传感器检测到的模拟电压转换成数字量输入单片机。
2.1.7温度传感器
将测试点温度的变化转换成模拟电压送A/D转换器。
2.1.8压力传感器
将测试点压力的变化转换成模拟电压送A/D转换器。
2.1.9驱动电路
将单片机输出的控制信号变成执行机构所需功率的驱动信号送执行机构。
2.1.10执行机构
在驱动信号的作用下,完成最终任务的执行。
2.2系统电路设计
根据系统要求和系统框图1进行了电路的详细设计,下面就各电路芯片的选择和电路设计作一介绍,电路原理图如图2所示。
2.2.1键盘电路设计
该部分的功能是对系统进行各种参数的设置和对系统进行控制。参数设置主要包括对温度、压力的值进行设定,另一就是对日期和时间进行设置。控制主要包括如启动、停止和各种参数的选择等。由于系统要求功能不多,所以共设置了8个键,这8个键与单片机的P20~P27相连,由于单片机的引脚目前还够用,所以采用最简单的连接方式。
2.2.2时间电路
系统要求显示日期和时间,单片机虽然可以产生系统的日期和时间,一但系统关机后,日期和时间将无法统计,所以选择了时间电路DS1302。此电路可自动对日期和时间进行统计,如产生年、月、日、时、分、秒,并对这些参数进行存储。当需要显示日期和时间时,单片机直接从DS1302读取,经处理后送液晶显示器。
2.2.3单片机的选择
单片机是系统的核心部分,用它对系统各部分进行管理控制。根据系统要求选择了AT89C52,AT89C52有4个8位的并口,8kB闪存等,完全可以满足系统要求。单片机与其它各部分的连接全部采用直接连接方式,这样可使系统具有结构简单,使用器件少,成本低等优点。
2.2.4电源电路设计
电源电路采用变压器对220V交流变压,变成10V经整流器整流滤波,供继电器使用,再经三端稳压器稳压后产生+5V后供单片机和其它需+5V的电路使用。+5V的另一路就是对可充电电池充电,供DS1302使用。
2.2.5显示电路设计
由于系统要求显示汉字,行数为4行。所以选择了OCMJ4XSC-8点阵式液晶屏,其内部有显示RAM,字型产生器,内置2M位中文字型ROM,总共提供8192中文字型(16×16点阵),16k位半宽字型ROM,总共提供126个(16×8点阵),点阵数为128×64,共可显示4行,每行8个汉字。单片机通过P0口与OCMJ4XSC-8传输信息,用P1口的对应位传输控制信号。我们用此显示屏来显示系统的工作情况,如设置温度、压力,实测温度和压力,日期和时间等。
2.2.6A/D转换电路设计
要求能对两路模拟电压进行转换,将温度和压力传感器检测到的模拟电压转换成数字量输入单片机。这里选用了8路模数转换器ADC0809,电路通过P0口输入数据,通过P15、P16和P17对其进行控制。
2.2.7温度传感器选择
对容器内的水温进行测试,将测试点水的温度转换成0~5V电压送A/D转换器。供单片机分析判断,当水的温度低于最低设定值时,启动加温电路给容器内加温,当水温高于最高设定值时,停止加温电路加
- FPGA的DSP性能揭秘(06-16)
- 基于单片机通用引脚的软件UART设计(10-16)
- 分时操作系统思想在单片机中的具体应用 (10-30)
- 基于AT89C51+DSP的双CPU伺服运动控制器的研究(05-26)
- 关于RTX51 TINY的分析与探讨(05-30)
- 基于MC9S12DGl28单片机的智能寻迹车设计(04-03)