微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > IXP425和DM642的会议电视多点控制单元硬件设计

IXP425和DM642的会议电视多点控制单元硬件设计

时间:01-18 来源:互联网 点击:

机NPE,能对外部提供2个MII接口,并行工作的原理使得网络处理性能较好,支持802.3协议内容,标准的MII接口只需外接PHY物理接口芯片,平台中采用了Intel的LXT972A,即能完成与外界数据的交互。当然,变压器的使用也是必须的,利用了HALO生产的TG110-S050N2与RJ45接口挂接,连接示意图如图4所示。由于IXP425内置了MAC控制器,完善的MII接口使得平台的网络应用比较简单而具有针对性。


2.3 音/视频处理模块设计
2.3.1 PCI接口设计
IXP425 PCI控制器外部挂了4片DM642,总线为33MHz,连接示意图如图5所示。IXP425 PCI总线主要完成对DM642的启动加载、芯片配置管理、PCI总线仲裁和媒体流调度。DM642芯片组主要完成音/视频媒体流的编码、音/视频合成的功能。目前的容量为4路音/视频合成,视频算法为H.264,语音算法为AAC、G.723.1等。


其中,DM642A占用IXP425的PCI时隙1,DM642B占用IXP425的PCI时隙2,DM642C占用IXP425的PCI时隙3,DM642D占用IXP425的PCI时隙4,其有差异的对应引脚互连如下:DM642A与IXP425的PCI引脚对应。PCI中断控制信号由CPLD进行会聚后上报给CPU,CPU通过读取CPLD内部的中断寄存器来判断外围PCI设备的中断事件。
2.3.2 音/视频处理模块最小系统设计
EMIFA允许无缝连接多种SDRAM,由于选用的SDRAM大小为64 MB,根据DM642 EMIFA的接口准则,DM642最小系统如图6所示。


芯片选择由CE0完成,选用2片16MB大小的SDRAM进行位扩展后,最大寻址空间为32MB,行地址选通为A[3:10],列地址选通为A[3:14],块选择(bankselect)为A[15:16],故使用DM642地址线A[3:16]。DM642内核工作在50M×12 Hz的模式下,EMIF接口工作在25M x 5.33 Hz,PCI接口工作在33 MHz时钟频率下。

2.3.3 Flash设计
IXP425外挂一片Flash,存储BOOT程序。芯片启动后,从大容量Flash中导入IXP425所需映像到内存中。DSP的程序不单独配置Flash存储器,IXP425通过PCI总线把DSP的程序导入到各自的RAM中运行。IXP425是PCI总线的主器件,其他DSP芯片为从器件。
IXP425通过PCI总线启动DSP的过程如下:
①DSP的配置引脚设置为PCI BOOT模式(AEA[22:21]=01,[PCI_EN:TOUT0/MAC_EN]=10)
②IXP425通过CPLD释放DM642的复位引脚,DM642进入安装状态;
③IXP425通过PCI总线配置DM642的PCI寄存器;
④IXP425设置DM642的存储器和I/O空间;
⑤IXP425把DM642的BOOT程序导入DM642内部RAM中,起始地址为0;
⑥IXP425访问DM642的存储器空间,把程序写入DM642的内存中,DM642的页寄存器(DSPP)可以使IXP425能够访问DM642的所有空间;
⑦IXP425置DM642的HDCR寄存器的DSPINT位为1,把DM642从安装状态释放;
⑧DM642从地址0处开始运行BOOT程序。
2.3.4 OPLD设计
单板CPLD完成的具体功能如下:单板IC复位控制、中断处理、时钟检测、时钟分频、时钟计时(时钟同步)、片选译码、I/O扩展,单板采用一片CPLD,CPLD资源要求仅能使用到70%,预留日后升级使用和防止布线紧张。
2.4 时钟设计
(1)PCI时钟
33 MHz晶振的输出经过一个BUF之后分出 8路:一路给CPLD作为检测时钟;一路给IXP425的OSC-IN作为芯片工作时钟;一路给IXP425的EX_CLK引脚,作为Expansion总线时钟;一路给IXP425的PCI,作为PCI的时钟;剩下4路送给PCI时钟驱动器。
(2)以太网及SDRAM时钟
50 MHz晶振作为CPLD的主时钟,该时钟经过2分频后送给各路以太网芯片作为各自芯片的主时钟,各个时钟没有同步要求。DM642 SDRAM时钟由ICS512倍频获取,而IXP425的SDCLK_OUT驱动能力较强,直接驱动4片SDRAM工作。
2.5 单板电源设计
电源框图如图7所示。


2.6 JTAG链接
单板CPU、CPLD的JTAG单独成链,方便加载和调试,4片DM642连成一条菊花链,硬件兼容各个芯片单独调试,菊花链框图如图8所示。



3 硬件调试
本多点控制单元的硬件部分主要进行以下调试:
①电源、复位模块调试:焊接电源模块芯片及外围电路,测试+5 V、3.3 V、1.4 V、1.3 V电压输出是否正常。电压输出正常后,焊接复位电路元件,上电后观察复位电压及延续时间是否满足设计要求,用示波器测量复位信号的电平和持续时间等是否与设计相符。上电后注意各电压转换芯片是否烫手,不正常则立即断开电源进行检查。
②最小系统调试:在板上焊接IXP425芯片、DM642芯片、CPLD、SDRAM、Flash、JTAG接口及各模块电路外围元件。用放大器仔细检查有无短路、断路、虚焊、漏焊、假焊等情况。无问题后上电,测量各芯片工作电压是否正常,用示波器和频率计测量各模块的工作时钟是否正常。利用JTAG口将硬件与计算机相连,配置好控制寄存器后,测试SDRAM读写功能是否正常,Flash擦写功能是否正常。如果工作不正常,检查时序信号、硬件连接等情况。
③PCI总线调试:测试各功能模块之间数据传送是否正常,如IXP425读写4块DM642,D642之间读写数据等,需结合计算机、示波器、频谱分析仪、逻辑分析仪等进行测试。
④网络收发模块调试:焊接LTX972A及外围器件。检测IXP425的MII接口与LTX972A芯片之间连接是否正常,通过Intel提供的LTX972A测试程序测试网络收发模块是否能与本地PC机通过网口进行数据通信。

4 结论
本多点控制单元在设计上具有以下特点:
①非PC机的嵌入式会议电视多点控制单元设计;
②内部采用PCI总线连接,解决会议电视多点控制单元内部突发大数据量传输和各数据处理模块的同步问题;
③多并行数据处理模块设计。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top