LTC3630转换器应对汽车及工业环境的挑战
时间:02-08
来源:互联网
点击:
引言
汽车和工业系统的发展趋势是采用电子部件取代机械式的功能部件,因而导致其所采用的微控制器、信号处理器、传感器和其他电子器件的数量成倍增加。这里的问题是:24V车用电气系统和工业设备为电机和螺线管采用了相对较高的电压,而微控制器及其他的电子部件则需要低得多的电压。因此,存在着一种显而易见的需求,這就是需要从高输入电压产生非常低电压的紧凑型高效率降压转换器。
具一个可调输出低至800mV的65V输入、500mA DC/DC转换器
LTC3630是一款通用的突发模式(Burst Mode)同步降压型DC/DC转换器,其包括三种可通过引脚选择的预设输出电压。或者,也可以利用反馈电阻器将输出设定为低至800mV。可通过单个电阻器设定一个50mA至500mA的可调输出或输入电流限值。该拓扑的迟滞特性可提供固有的短路保护。通过把多个LTC3630并联在一起并将主器件的FBO连接至一个从器件的VFB引脚,這便能提供较高的输出电流。该器件内置可调软起动。一个精准的RUN引脚门限电压可用于实现欠压闭锁功能。
具300mA输出电流限值和输入欠压闭锁功能的24V稳压器
图1示出了一款48V至24V转换应用电路,其展现了LTC3630的特性,包括欠压闭锁和输出电流限制。工作效率示于图2。
虽然LTC3630能提供高达500mA的输出电流,但图1中的电路是针对300mA最大值进行设置的。从ISET引脚输出及内部产生的5μA偏置电流在ISET电阻器两端产生一个电压,此电压决定了最大输出电流。图4示出了当一个阻性负载从大约100Ω降到低至8Ω的输出电压,同时输出电流保持在接近300mA编程值的情况。此外,该DC/DC转换器中使用的迟滞拓扑还可提供固有的短路保护。
图5示出了LTC3630另一项有用的特性。在该5V电路中,电流限值由一个连接在 VIN和ISET之间的阻性分压器设定,该分压器在ISET引脚上产生一个跟踪VIN的电压。这允许VIN控制输出电流,从而决定输入电流。
LTC3630提供了适用于高效率、高电压应用的特性组合。其宽输出电压范围、可调电流能力和固有的抗短路操作使得该DC/DC转换器能轻松地应付要求严苛的应用。(end)
汽车和工业系统的发展趋势是采用电子部件取代机械式的功能部件,因而导致其所采用的微控制器、信号处理器、传感器和其他电子器件的数量成倍增加。这里的问题是:24V车用电气系统和工业设备为电机和螺线管采用了相对较高的电压,而微控制器及其他的电子部件则需要低得多的电压。因此,存在着一种显而易见的需求,這就是需要从高输入电压产生非常低电压的紧凑型高效率降压转换器。
具一个可调输出低至800mV的65V输入、500mA DC/DC转换器
LTC3630是一款通用的突发模式(Burst Mode)同步降压型DC/DC转换器,其包括三种可通过引脚选择的预设输出电压。或者,也可以利用反馈电阻器将输出设定为低至800mV。可通过单个电阻器设定一个50mA至500mA的可调输出或输入电流限值。该拓扑的迟滞特性可提供固有的短路保护。通过把多个LTC3630并联在一起并将主器件的FBO连接至一个从器件的VFB引脚,這便能提供较高的输出电流。该器件内置可调软起动。一个精准的RUN引脚门限电压可用于实现欠压闭锁功能。
具300mA输出电流限值和输入欠压闭锁功能的24V稳压器
图1示出了一款48V至24V转换应用电路,其展现了LTC3630的特性,包括欠压闭锁和输出电流限制。工作效率示于图2。
图1:具欠压闭锁功能和300mA电流限值的高效率24V稳压器
图2:图1所示电路的效率
图3:输入电压变化时的输出电压波形(显示欠压闭锁门限电平)
虽然LTC3630能提供高达500mA的输出电流,但图1中的电路是针对300mA最大值进行设置的。从ISET引脚输出及内部产生的5μA偏置电流在ISET电阻器两端产生一个电压,此电压决定了最大输出电流。图4示出了当一个阻性负载从大约100Ω降到低至8Ω的输出电压,同时输出电流保持在接近300mA编程值的情况。此外,该DC/DC转换器中使用的迟滞拓扑还可提供固有的短路保护。
图4:阻性负载变化时的输出电流与输出电压波形 (输出电流限定值为 300mA)
图5示出了LTC3630另一项有用的特性。在该5V电路中,电流限值由一个连接在 VIN和ISET之间的阻性分压器设定,该分压器在ISET引脚上产生一个跟踪VIN的电压。这允许VIN控制输出电流,从而决定输入电流。
图5:具55mA输入电流限值的5V稳压器
图6:输入电压与负载电流及输入电流的关系(采用图5所示的输入电流限制电路)
LTC3630提供了适用于高效率、高电压应用的特性组合。其宽输出电压范围、可调电流能力和固有的抗短路操作使得该DC/DC转换器能轻松地应付要求严苛的应用。(end)
- DSP与数据转换器协同工作考虑的10大因素(08-08)
- 基于DSP技术的双电源自动转换控制器的设计(03-11)
- McBSP技术在数据传输中的应用(10-23)
- TI DSP入门芯片TMS320F28335(07-22)
- 基于DSP的光纤监控网络系统方案(08-03)
- 利用FPGA实现外设通信接口之: 利用FPGA实现A/D、D/A转换器接口(06-05)