微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 解析两种典型的电池供电电路

解析两种典型的电池供电电路

时间:05-13 来源:互联网 点击:

换器的供电回路完全切断,进一步减小了关机时的漏电流。整机关机后,经检测,关机电流小于5uA.图2中的电池低电压检测报警由日本理光公司的RN5VT20CA(U9)实现,检测电压为固定值2V.

与图1相比较,用JM16键开机后,还必须利用单片机P3.6输出低电平实现开机自保,因此称该电路为“软开关电路”.使用该软开关电路的优点是无须考虑按键去抖动问题,硬件电路简单,可降低硬件成本,节约印制板板面,在手持式产品中印制板板面是非常宝贵的(元器件的数量直接影响印制板的大小和产品整体外观)。缺点是当受到外界强信号干扰或由于电池电量不足而引起死机时,按键JM16将不起作用,必须取出电池,再重新装入方能解决死机现象。当然这种情况出现的机率极低,且因电池电量不足而引起死机时,就需要更换电池了。而图1的硬开关电路中,当碰到死机现象时,无需触摸电池,通过按键JM2就能实现开机和关机。

电源滤波

在以上介绍的DC/DC转换电路中,采用的是DC/DC升压转换器件,升压型DC/DC转换器的电路结构如图3所示。

图3

开关K导通时电池BT给电感L充电,在L中以场的形式储存能量1/(2L×I2)。其中,I为电感电流。K断开后,L中的磁能又以电能的形式释放给滤波电容C2和负载RL.周期性的开关操作使电池能量源源不断地送入负载,而输出电压被转换为:

Vout = Vin/(1-δ)

式中,δ为开关占空比(导通时间占工作周期的比率)。控制电路监测输出电压并控制占空比,从而达到调节和稳定输出电压的目的。本文介绍的DC/DC升压转换器件的控制方式均为PFM(脉冲频率调制),具有较小的静态电流,轻载情况下效率较高,但纹波稍大。为保证主电路稳定工作,必须考虑对电源输出进行滤波。一般采用无源滤波电路来进行滤波,无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型,LCπ型滤波和RCπ型滤波等)。当采用电感滤波或复式电感型滤波时,需采用电感量高、体积大的电感,对手持、便携式产品并不适用,所以在负载电流较小的场合,采用RCπ型滤波,结构简单、经济,滤波效果也比较好。滤波电容的等效串联电阻《ESR)是造成输出纹波的主要因素,电容的材质应选择具有较低ESR的陶瓷电容、铝电解电容和钮电解电容,应尽量避免标准铝电解电容。采用RCn型滤波时,输出电压两端的脉动系数S=1/(Kω×C×R)。K为常数,由该公式可知,在ω值一定的情况下,R愈大,C愈大,则脉动系数愈小,也就是滤波效果就越好。R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C的电容量,又会增大电容器的体积和重量,也不易实现,因此电容的容量一般为10-100 uF,电阻的值一般在10Ω以下。

结语

以上介绍的两种电池供电电路,都是将电池电压转换为+3.3 V直流电压,为单片机应用系统提供工作电源的DC/ DC升压电路。这类电路主要用在由2节7号电池供电的PDA、手持终端等产品中,其他类产品(如手机、数码相机)的电池供电电路会有所不同,但工作原理基本相似。本文所讲的两个实例较好地解决了在电池供电电路的设计中,面临的如何实现开关机、降低关机电流、减小输出电源中的纹波和干扰信号、提高转换效率等一系列问题。只有妥善地解决这些问题,才能确保产品稳定可靠地工作。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top