基于OMAP-L138的电子式互感器校验仪设计
电子式互感器替代电磁式互感器是电力系统的发展方向,但是由于电子式互感器结构的特殊性,难以应用电磁式互感器校验装置进行校验,因此电子式互感器校验方法及其装置的研究一直是国内外的研究热点,如何准确地检验电子式互感器对电力系统继电保护、计量和控制具有重要意义。
电子式互感器分为电压互感器和电流互感器两种,对其进行校准时,标准信号仍然由电磁式互感器获得。待测信号则针对不同情况分为两类:
模拟信号输出:对电压互感器而言,输出范围在1.625-6.5V之间,对电流互感器而言,其输出范围在22.5-4000mV之间;
数字信号输出:是模拟信号的等距抽样序列。对应这两种情况,电子式互感器的比差均可按照电磁式互感器的比差定义来进行计算,但是相差则依据情况的不同而有所变化,这源于数字信号输出时数据处理和传输时间带来的延迟。因此,数字信号输出时的相位误差应当在测得的相位差中减去额定相位偏移和额定延时时间构成的相位移。
对模拟信号输出的电子式互感器,由于其输出为弱电信号,不具备驱动能力,因此难以用现有的电磁式互感器校验装置进行校验,必须考虑将其和标准电磁式互感器的模拟输出信号均进行A/D转换后利用计算机或微处理器进行分析处理。 而对数字信号输出的电子式互感器,由于标准信号为模拟信号,也应将其转换为数字信号后再进行处理。
目前常用的方法是数字校验方法,其借助数据采集装置将标准电磁式互感器和待测电子式互感器输出信号读入计算机,通过软件分析计算得出电子式互感器的精度等级。该方法可进一步细分为直接法和差值法两种,前者除得到精度结果之外,还可以得到谐波、电子式互感器输出幅度及相位等附加信息,但其对采集装置的要求很高;后者对采集装置的要求不高,但要求电子式互感器输出和标准电磁式互感器输出须严格相等。除硬件方面的要求之外,两者在对信号的分析处理方面异曲同工,多采用傅里叶变换的方法求取各路采集信号的基波分量。目前,基于数字校验方法的校验装置多基于计算机实现,为了消除电网频率波动对校验结果的影响,又都采用基于高数据采集率的校验方法,这些都不利于校验过程的实时实现,也难以利用嵌入式微处理器构建便携式智能化校验装置。
本文描述电子式互感器校验仪系统,基于德州仪器OMAP-L138双核芯片;系统包含2路二次电压测量;2路二次电流测量;1路模拟小信号测量;2路(61850)光纤通道;2路RJ45网络接口;1路(FT3)光纤通道;电同步信号输入/输出接口;光同步信号输入/输出接口;1路 USB2.0,10/100M以太网;1路RS232;基于有限次迭代与最小二乘法的组合测量原理实现了频率的快速准确测量,随后结合准同步算法的基本原理进行信号基波分量的提取,两者的结合有效解决了因电网频率波动而导致的非同步采样对校验结果的影响问题。

图 1电子式互感器校验装置系统硬件框图
图1给出了电子式互感器校验仪系统原理框图,待校验的ECT有模拟和数字2种输出,其中模拟输出是采集的数字信号D/A变换后的输出。依据IEC60044-7/8 标准规定,电子式互感器输出的数字量和模拟量均需校验;
电子式互感器校验仪的基本原理:首先将被测电子式电流互感器的高压端和标准电磁式电流互感器的高压端串联接到高压侧(对电子式电压互感器的校验采用的是并联方式)。对于标准电磁式互感器输出的信号,先经过切换电路选择电压/电流互感器的处理电路,通过二阶压控低通滤波电路进行滤波,然后经过采样/保持电路进入A/D转换电路,使模拟信号数字化;被测电子式互感器的数字信号,由以太网接口按照电子式互感器标准接口的传输协议对其接收。标准信号和被测信号在微处理器中进行比较,按照电子式互感器的数字输出标准规定的误差定义计算出比差、相位差,实现对电子式互感器的校验工作。
电子式互感器校验仪的AD采集电路的精度要求较高,按照精度高两个等级的原则,电路精度需要保证在0.02%,采用22位A/D。可以校准0.1 级及以下准确级的电子式互感器。
电子式互感器的相位差与传统的电磁式互感器的相位差不同,原因是电子式互感器的数字数据输出量是经过处理的数据,在处理数据和传输数据时将产生一个相当大的延时,这一延时对相位差的影响会很大,把它当成相位差是不恰当的,电子式互感器的相位差和相位误差不能等同。电子式电流/电压互感器的数字输出相位差是一次侧某电流/电压出现时刻与二次侧对应的数字化数据启动传输的时刻的时间差。电子式互感器的相位误差(φw)则等于相位差(φ)减去由于额定相位差(φe:电子式互感器因选用的
- 基于模糊逻辑设计的DSP发动机控制器(11-05)
- 安全与嵌入式系统(04-03)
- 提高MSP430G系列单片机的Flash 擦写寿命的方法(11-05)
- 真实环境中的系统设计(09-09)
- 加快 TPA2028D1对突发音信号(短暂提示音)的响应(12-20)
- 德州仪器推出业界首款应用于严苛环境的4MB闪存器(09-12)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...